
Implementing the IMS
Catalog using Ansible

Sergio Saucedo

Software Developer seulsale@ibm.com

mailto:email.address@ibm.com

Agenda Ansible Overview

• Concepts

• Benefits

• Ansible Automation Platform

• Ansible for IBM Z Content

• Ansible with IMS

• Brief overview of IMS Catalog

• Overview of Ansible IMS Collection

• Demo

• Configure IMS Catalog with Ansible

• Walkthrough of IMS Provisioning Playbooks

IBM IMS 2

IBM IMS 3

Benefits

Simplicity

Uses a simple, human-

readable YAML syntax for

playbooks, making it easy to

learn and use.

Agentless

No need to install special

software on managed nodes as

it relies on SSH to

communicate with the nodes,

reducing overhead and

simplifying setup.

Idempotent

Ansible playbooks are

designed to be idempotent,

meaning that running a

playbook multiple times will

always result in the same

state.

Community

There is a large and active

community of users and

contributors. This community

provides a wealth of

knowledge, pre-built roles,

modules, and playbooks

through Ansible Galaxy.

IBM IMS 4

Basic concepts

Inventory

This is a list of managed nodes

(hosts) that Ansible can

interact with.

Can be a simple text file or a

dynamic inventory.

Playbooks

These are YAML files that

define a series of tasks to be

executed on managed nodes.

They are Ansible’s

configuration, deployment, and

orchestration language and can

include variables, tasks,

handlers and roles.

Modules

Units of code that Ansible

executes on managed nodes.

Each module is designed for a

specific purpose.

Roles

Roles are a way to organize

playbooks and other related

files to facilitate sharing and

reuse.

A role can include tasks and

variables just as a playbook.

IBM IMS 5

Ansible Content Collections

Ansible plugins for Red Hat Developer
Hub

Red Hat Ansible Lightspeed

Red Hat Ansible Automation
Platform Operator

Automation mesh

Automation creation Automation administration

Ansible development tools

Create

Manage

ScaleAnsible development workspaces

An integrated solution for the enterprise.

Scale

Red Hat Insights Automation analytics

Manage

Business Tools and AnalyticsAutomation Deployment

Execution Environments

Event-Driven Ansible

IBM IMS 7

Traditional Mainframe
Management

Ansible

Automation Approach - Often relies on JCL and custom
scripts (REXX).

- Procedural, step-by-step instructions.
- Typically mainframe specific.

- Declarative, describing desired state.
- Uses YAML for playbooks, easy to

read and write.
- Cross-platform, can manage

mainframe and distributed systems.

Configuration Management - Often manual processes or
homegrown tools.

- Configuration spread across multiple
libraries or data sets.

- Centralized configuration as code.
- Version control integration.
- Easy to audit and track changes.

Learning Curve and Skill
Transfer

- Steep learning curve for mainframe-
specific tools.

- Limited pool of skilled professionals.

- Easier learning curve, especially for
those familiar with modern IT tools
and practices.

- Skills transferable across platforms.

Requirements

Ansible installed on control

node

The control node is the

machine where Ansible

commands and playbooks are

executed.

SSH Access to managed nodes

Ansible uses SSH for

connecting to and managing

remote hosts.

The control node must have

access to all hosts.

Python and ZOAU installed on

managed nodes

Ansible modules are typically

written in Python and executed

on managed nodes.

No charge PID.

PAX and SMP/E editions.

Valid inventory file or hosts

defined

The inventory file contains the

list of hosts being managed.

Hosts can be divided in

different groups or could even

be retrieved dynamically with a

script.

IBM IMS 8

Similarities and Comparisons

JCL and Ansible

Purpose

JCL: Defines a series of jobs to

be executed on a mainframe

system.

Ansible Playbooks: Define a

series of tasks to be executed

on multiple servers or systems.

Structure

JCL: Uses a structured

language with specific

statements (e.g., JOB, EXEC,

DD).

Ansible: Uses YAML format

with defined structures (e.g.,

hosts, tasks, vars).

Job Steps / Tasks

JCL: Each EXEC statement

typically represents a job step.

Ansible: Each task in a

playbook is analogous to a job

step.

Conditional Execution

JCL: Uses IF/THEN/ELSE

constructs and condition

codes.

Ansible: Uses 'when'

statements and registered

variables for conditional

execution.

Error Handling

JCL: Uses condition codes and

COND parameters to handle

errors.

Ansible: Uses 'ignore_errors',

'failed_when', and

'block/rescue' for error

handling.

Output

SDSF: Provides a way to view

and control job output and

system resources.

Ansible: Provides real-time

output of task execution and

supports various output

formats (JSON, YAML, etc.).

IBM IMS 9

What does automation
on z/OS look like?

10

//CREATPDS JOB (123),CLASS=C,MSGCLASS=S,MSGLEVEL=(1,1),

// NOTIFY=&SYSUID

//*

//STEP001 EXEC PGM=IEFBR14

//SYSPRINT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSDUMP DD SYSOUT=*

//DD01 DD DSN=USERID.DATASET1,

// DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(12,33),RLSE),UNIT=SYSDA,

// DCB=(DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=800)

//*

//STEP002 EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=A

//OUT1 DD DSNAME=USERID.DATASET1,UNIT=disk,VOL=SER=111112,

// DISP=(OLD,KEEP)

//IN6 DD DSNAME=USERID.DATASET6,UNIT=disk,VOL=SER=111115,

// DISP=OLD

//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))

//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1))

//SYSIN DD *

COPYOPER COPY OUTDD=OUT1

 INDD=IN6

 SELECT MEMBER=(B,A)

How are we simplifying automation on z/OS with Ansible?

11

- name: Copy a PDS to a new customized PDS.
 ibm.ibm_zos_core.zos_copy:
 src: “USERID.DATASET6{{ item }}”
 dest: “USERID.DATASET1{{ item }}”
 remote_src: true
 volume: 111112
 loop:

 - A
 - B

Ansible for IBM Z Collections

A collection is a distribution format for Ansible content.

It can be seen as as a package that bundles playbooks, roles,

modules and plugins together.

This collections enables

Ansible users to manage batch

jobs, program authorizations

and operator operations.

- zos_copy

- zos_dataset

- zos_job_submit

- zos_operator

- zos_apf

+227k

The ibm_zos_ims collection

support tasks such as

generating DBDs, PSBs and

ACBs as well as running type-1

and type-2 commands.

- ims_acbgen

- ims_catalog_populate

- ims_command

- ims_dbrc

- ims_ddl

+47k
IBM IMS 12

ibm.ibm_zos_core ibm.ibm_zos_ims

Red Hat® Ansible® Certified Content for IBM Z®: Collections

13

Available on Ansible Galaxy here and on Automation Hub

IBM z/OS® Core 354,000 Downloads

IBM z/OS® CICS® 20,000 Downloads

IBM z/OS® IMS 52,000 Downloads

IBM z/OS®
Management
Facility (z/OSMF)

9,000 Downloads

IBM Z® Hardware
Management
Console

108,000 Downloads

IBM Z® System
Automation

3,950 Downloads

Collectively

• 83 Modules

• 15 Roles

http://ibm.biz/BdfrAu

Implementing the IMS
Catalog

IBM IMS 14

– Add catalog DBDs and PSBs to the DBDLIB,
PSBLIB and ACBLIB.

– ACBGEN the catalog DBD and PSB resources
into the ACBLIB.

– Modify DFSDFxxx PROCLIB member.

– Define the catalog database into DBRC.

– Create HALDB structure, minimum of 1
partition.

Loading the IMS catalog

IBM IMS 15

– IMS Catalog Populate utility (DFS3PU00).

– Load, insert, or update DBD and PSB
instances into the database data sets of the
IMS catalog from ACB library data sets.

– Load mode DFSCPL00.

– Update mode DFSCP001.

– Analysis-only (read-only) mode DFSCP000.

Keeping the catalog and
ACB libraries in sync

IBM IMS 16

– ACB Generation and IMS Catalog Populate
utility (DFS3UACB).

– Performs both the generation of ACB
members in an IMS.ACBLIB data set and the
creation of the corresponding metadata
records in the IMS catalog.

IBM IMS 17

Let’s implement
the IMS Catalog in
minutes…

IBM IMS 18

IBM IMS 20

Relevant links

- Z Samples repository: https://github.com/IBM/z_ansible_collections_samples

- Ansible for Z Intro repo, includes the demo playbooks: https://github.com/IBM/z-ansible-workshops

- Unified documentation for the collections: https://ibm.github.io/z_ansible_collections_doc/index.html

https://github.com/IBM/z_ansible_collections_samples
https://github.com/IBM/z-ansible-workshops
https://github.com/IBM/z-ansible-workshops
https://github.com/IBM/z-ansible-workshops
https://github.com/IBM/z-ansible-workshops
https://github.com/IBM/z-ansible-workshops
https://ibm.github.io/z_ansible_collections_doc/index.html

	Default Section
	Slide 1: Implementing the IMS Catalog using Ansible
	Slide 2: Agenda
	Slide 3
	Slide 4: Benefits
	Slide 5: Basic concepts
	Slide 6
	Slide 7
	Slide 8: Requirements
	Slide 9: Similarities and Comparisons JCL and Ansible
	Slide 10: What does automation on z/OS look like?
	Slide 11: How are we simplifying automation on z/OS with Ansible?
	Slide 12: Ansible for IBM Z Collections
	Slide 13: Red Hat® Ansible® Certified Content for IBM Z®: Collections
	Slide 14: Implementing the IMS Catalog
	Slide 15: Loading the IMS catalog
	Slide 16: Keeping the catalog and ACB libraries in sync
	Slide 17

	Demo
	Slide 18: Let’s implement the IMS Catalog in minutes…
	Slide 19
	Slide 20

