
Making the case for developers

to use In-Memory tables

Larry Strickland

Chief Product Officer

© 2023 DataKinetics Ltd. All rights reserved.

Presenter:

Larry Strickland

Chief Products Officer

Making the case for developers to

use In-Memory tables

© 2023 DataKinetics Ltd. All rights reserved.

Memory Costs are Decreasing

• Although the concept of in-memory processing has been around for a

long time, the falling price of RAM and growing use cases have led to

a new focus on in-memory techniques and processing

© 2023 DataKinetics Ltd. All rights reserved.

• It is orders-of-magnitude more efficient to access data from

memory than it is to read it from disk

• Disk I/O is an expensive operation

• Memory access is usually measured in microseconds,

whereas disk access is measured in milliseconds
• 1 millisecond equals 1000 microseconds

• Avoiding I/O improves performance because there is a LOT

going on “behind the scenes” when you request an I/O

Disk Access is Much Slower Than Memory Access

© 2023 DataKinetics Ltd. All rights reserved.

Source: An I/O White Paper,

http://idcp.marist.edu/pdfs/ztidbitz/An_IO_WhitePaperForZ.pdf

What is Involved in an I/O Operation?

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

In-Memory use cases

• In memory use cases depend on workload!

• In this presentation will look at some examples

- Caches / Buffer Pools

- In-Memory Tables

- Shared In-Memory Tables

- In-Memory Table Indexes

- Fast Insert

- In-memory sorting

- Temporary Tables

- Large or small tables?

- Shared tables

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

Technique: Buffer pools

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

Buffer pools

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

Buffer pools invalidate

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

Buffer pools – Pre fetch

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

Same technique

• DB2 Buffer Pools

• Package Cache

• Instruction Pipelines for CPUs

• Data Pipelines for CPU

• VSAM Buffers

Primary goal of
this technique
is to reduce I/O
wait time (not
CPU)

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

In Memory Tables

Data store

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

In Memory Tables

Data store

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

Shared In Memory Tables

Read/Write Locks

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

In-Memory Table Indexes

Table (rows)

Key

In-memory Index
(sorted addresses of rows)

Alternate
IndexLocationKey Value

Traditional Index

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

In-Memory Sort

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

In-Memory Sort :DB2

• Db2 v12 improved its RDS sort processing using more

memory:

• Expanded the maximum number of nodes in a sort

tree, from 32,000 to 512,000 for non-parallel sorts or

128,000 for parallel sorts under child tasks.

• These enhancements might require more memory to

be allocated to the thread for sort activities, but can

result in a significant CPU reduction.

• Requires the use of more memory – but ….

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

Sort performance measurements (DB2 v12)

• In-memory sorts that previously required work files for

sort and merge processing
• 75% reduction in CPU time

• Increased sort pool size
• 50% reduction in elapsed time and CPU time

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

Sort performance measurements (cont’d)

• SAP workloads

• SAP CDS Fiori: 5% CPU time reduction for several
queries
(1% CPU time reduction across the entire workload)

• SAP CDS FINA: 1.8% reduction in CPU time for the
entire workload
(12% reduction in the total number of GETPAGEs)

• IBM Retail Data Warehouse

• Two queries: 14% and 6% CPU time reduction

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

In-Memory Hash

Index (Address Slots)

Slot calculated using Fn(Key)
Where Fn returns position 0..n

e.g. Fn(a) = 2

0

3

2

1

4

5

6

7

a

d

b

cEmpirically for In-Memory Indexes:
- Rows <10 – serial search fastest
- 10 < Rows <100 – binary search fastest
- Rows > 100 – Hash search

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

In-memory Table examples

• DB2 – In-memory table

• DB2 – Table fixed in buffer pools
• Structures still support on disc

• Pure In-Memory Tables
• IBM IZTA

• DKL tableBASE

• Cobol Internal Tables (other languages too!)
• Limited to a primary index

• Not Shareable

• Home Grown In-Memory Accelerators
• Often from when people built their own everything

© 2023 DataKinetics Ltd. All rights reserved.

• Two systems tested – one accessing data using Db2 with buffers, one accessing data using Db2 with

tableBASE high-performance in-memory technology

• Improvements are made without changes to Db2 systems, and without changes to application logic

IBM Benchmark Results for Db2

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

Fast Insert

Data store

Dedicated tables/pipes/pages

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

Use cases for fast insert

• High rate of concurrent INSERTs into a journal or audit

table
• Regulatory compliance

• Access tracking

• …..

• Challenges
• Indexing has to catch up – so immediate retrieval not possible

• Keys must not conflict

DB2 v12 introduced a feature called Fast Insert 2

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

Temporary In-memory Tables

• Leverage in-memory tables – no I/O

• Leverage fast insert – parallel write, no indexing

• Leverage in-memory indexes - fast to create

• Leverage in-memory sort – as part of building the

indexes

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

One customer’s experience

Challenge

• A COBOL program was using an internal table and a
binary search

• The search code was called 1.25 million times and had 4
searches in it

• Took over an hour of CPU to execute

Solution

• Replace the 4 searches with calls to in-memory table with
alternate indexes

Results

• 98% reduction in CPU required

• Now takes less than a minute to execute

ti
m

e
(s

ec
o

n
d

s)

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

Small or Large?

Long running batch job

1,000,000’s
of records

100’s

Each record read once, or maybe a few times

Each record read 10,000s of times

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

Results From Credit Card Processing

Challenge

• Reconciliation batch processing
taking too long

Solution

• Move a table describing the credit card options into
memory

• Each transaction required data from that table

Results

• 97% reduction in elapsed time

• Batch job that took 8 hours to complete now takes 15
min

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

Frequently opened VSAM

Long running batch jobLong running batch jobLong running batch jobLong running batch jobLong running batch jobLong running batch jobLong running batch jobLong running batch jobLong running batch jobLong running batch jobLong running batch jobLong running batch jobLong running batch jobLong running batch jobShort running batch job

Start

Open Cntl File

Read attributes

Close Cntl File

Remainder of
Processing

Cntl File

In Memory Table

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

Customer Example

VSAM file opened/read/closed by very frequently

running batch job

Moved file to sharable in-memory table
• 75% less CPU for reads

• 100% less CPU for open and close!

Results
• 98% reduction in elapsed time

• 93% reduction in CPU required

• More than 24 hours of CPU saved daily!

© 2023 DataKinetics Ltd. All rights reserved.

• The cache memory…
• The most powerful processor chips today (including

the z16) have layers of on-chip and on-board cache

in the form of eDRAM and SRAM.

• Much of your data winds up here at some point, but

it is all controlled by the system.

• There’s not much differentiation here other than the

newer chips typically have more/faster cache.

Memory usage on the mainframe

© 2023 DataKinetics Ltd. All rights reserved.

• Your database
• Your database is where your enterprise data lives, and

where your applications go to get data.

• Typically, this activity requires lots of I/O disk access-this is

the baseline for how fast you access data.

• But since memory is about 1000x faster than disk access,

we try to use that whenever possible.

Memory usage on the mainframe

© 2023 DataKinetics Ltd. All rights reserved.

• Buffering…
• DBMS buffers use main memory to cut out I/O for recent

disk access.

• They make a big difference in reducing data access time &

processing time. (Which can translate to lower operations

cost as well)

• (There are even third-party buffer tools and database cache

solutions that help improve buffer efficiency even more.)

• Buffered DASD accesses data up to 10 times faster than

non-buffered data.

• Did you know that you can augment this performance?

Memory usage on the mainframe

© 2023 DataKinetics Ltd. All rights reserved.

• Mainframe high-performance

in-memory technology...
• Shortens the code path for the data you access most often.

• Augments your buffered database, using main memory.

• Accesses data faster than buffer performance.

• Requires no changes to application logic or your database.

• If in-memory tables are small enough, and accessed often

enough, they can make it into the L3-L4 cache for ultra-

fast processing

Memory usage on the mainframe

© 2023 DataKinetics Ltd. All rights reserved.

• IDAA is fantastic at reducing long running queries (by

using parallelism)
• Queries are not run often

• In-memory tables are best for reducing very short

running queries
• Need many queries before the difference is noticeable.

What about IDAA?

© 2023 DataKinetics Ltd. All rights reserved.

In-Memory Table techniques that can improve performance

of specific workloads:
• Buffers (or cache)

• In-Memory Tables

• In-Memory Indexes (In-memory Sorts, address only changes, Hash....)

• Fast Inserts

• Temporary Tables (leveraging multiple aspects)

• Small tables

• Shared tables

Summary

Q&A

© 2023 DataKinetics Ltd. All rights reserved.1.800.267.0730 | DKL.COM+SUCCESS REQUIRES A DIRECTION... CHOOSE YOUR PATH

Thank you for your time.

Larry Strickland
Chief Product Officer

613 523 5500 ext 256

lstrickland@dkl.com

	Default Section
	Slide 1: Making the case for developers to use In-Memory tables
	Slide 2: Making the case for developers to use In-Memory tables
	Slide 3: Memory Costs are Decreasing
	Slide 4: Disk Access is Much Slower Than Memory Access
	Slide 5: What is Involved in an I/O Operation?
	Slide 6: In-Memory use cases
	Slide 7: Technique: Buffer pools
	Slide 8: Buffer pools
	Slide 9: Buffer pools invalidate
	Slide 10: Buffer pools – Pre fetch
	Slide 11: Same technique
	Slide 12: In Memory Tables
	Slide 13: In Memory Tables
	Slide 14: Shared In Memory Tables
	Slide 15: In-Memory Table Indexes
	Slide 16: In-Memory Sort
	Slide 17: In-Memory Sort :DB2
	Slide 18: Sort performance measurements (DB2 v12)
	Slide 19: Sort performance measurements (cont’d)
	Slide 20: In-Memory Hash
	Slide 21: In-memory Table examples
	Slide 22: IBM Benchmark Results for Db2
	Slide 23: Fast Insert
	Slide 24: Use cases for fast insert
	Slide 25: Temporary In-memory Tables
	Slide 26: One customer’s experience
	Slide 27: Small or Large?
	Slide 28: Results From Credit Card Processing
	Slide 29: Frequently opened VSAM
	Slide 30: Customer Example
	Slide 31: Memory usage on the mainframe
	Slide 32: Memory usage on the mainframe
	Slide 33: Memory usage on the mainframe
	Slide 34: Memory usage on the mainframe
	Slide 35: What about IDAA?
	Slide 36: Summary
	Slide 37
	Slide 38: Larry Strickland

