
LSR Tuning
Today

11/12/2019

• Eugene S Hudders

• C\TREK Corporation

• PO Box 560100

• Montverde FL 34756-0100

• ehudders@ctrek.com

• (787) 397-4150

C\TREK Corporation 2019 1

Disclaimers

• Remember YMMV

• Remember the political factor

• “If it ‘ain’t’ broke, don’t fix it!”

• The following products are trademarks of IBM
Corporation, Armonk, NY

• CICS TS

• COBOL LE

• z/OS

• VSAM

• DB2

Agenda

C\TREK Corporation 2019 11/12/2019 3

• CICS TS VSAM Support

• Physical I/O

• CICS TS FC API Costs

• KSDS Structure and Terms

• The Robin Hood Theory

Introduction

• Dynamic/Static Definition

• LSR Pool Measurement

• Buffer Allocation

• String/KL Allocation

• Buffer Monopolization

• Hiperspace Buffers

Traditional LSR Tuning

Agenda

• Fragmentation

• Buffer Alignment

• # of LSR Pools

• Non-Candidates for LSR

Other LSR Tuning

• VSAM CA Size

• CI/CA Splits

• Extents

Hidden Tuning Areas

Closing

INTRODUCTION

11/12/2019 C\TREK Corporation 2019 5

CICS TS VSAM
SUPPORT

• CICS uses three techniques to handle VSAM files within CICS TS:

• Non-Shared Resources (NSR)

• Local Shared Resources (LSR)

• Record Level Sharing (RLS)

• In recent years, new VSAM features announced for CICS have been LSR/RLS
oriented

• The major difference between the three techniques lies in the “ownership”
of the resources

• NSR → resources are used exclusively by the file

• LSR → resources are shared between participating files

• RLS → resources are in a different address space (SMSVSAM) and
requires a Coupling Facility (CF)

• CA splits tie up the main task TCB for NSR files

• Consider the use of the CO TCB (Multi-processor)

• Consider moving the file to LSR

6

LSR
Advantages

C\TREK Corporation 2019 11/12/2019 7

More efficient use of virtual storage versus NSR as resources are
shared

Better look-aside hit ratio because the Sequence Set Index (SSI) are
maintained in the buffer pool

Tends to be more self-tuning because buffers are allocated on a
Least Recently Used (LRU) algorithm keeping the information for the
more active files in buffers at the expense of lower activity files

Only one copy of a CI is allowed (better read integrity)

Can allocate up to 255 pools to
segregate file access

Provides more strings and buffers (VS is
the limit)

Best used by VSAM threadsafe (parallel
access versus single thread)

Supports Transaction Isolation

Physical I/O

• Physical I/O costs CPU cycles

• Instruction Path

• Application

• CICS

• VSAM

• MVS

• State Changes

• “Best I/O is the one that is not done”

• The key is to reduce physical I/O operations

• Measured by look-aside hit ratio

• CPU requirements for look-aside are much lower

• Misconception:

• “Disk cache hit doesn’t generate physical I/O
overhead”

Simplified
Physical I/O

Flow

• Physical I/O generates CPU Utilization

• CICS to

• VSAM to

• SVC Handler to

• IOS

• Start the I/O (SSCH) and eventually back to

• VSAM and back to CICS to have the task wait for I/O
completion

• CICS continues to dispatch work or MVS wait (ICV and
multiple wait)

• ---------------I/O interrupt occurs-----------------

• MVS handles and processes the I/O Interrupt

• Schedules an SRB to the CICS address space (AS)

• Dispatch the SRB when the AS is selected to run

• CICS Dispatcher selects the waiting task to run (based on
being ready and priority)

The Very Big I/O Picture

11/12/2019 C\TREK Corporation 2019 10

CICS TS ADDRESS SPACE

APPLICATION CICS TS VSAM
STUB

EXEC CICS
READ FILE

CONTINUE

DFHEIP
DFHEIFC
DFHFCFR
DFHFCVS
DFHFCVR

ANALYZE
REQUEST

LOOK-ASIDE?

SRB routine posts the Extended ECB – once
posted the CICS Dispatcher can dispatch the task

YES

NO

ISSUE SVC

OPERATING SYSTEM HARDWARE

INTERRUPT HANDLER

SUPERVISOR SVC
HANDLER

I/O SUPERVISOR
SSCH

PATH

DISK CU CACHE

DASD

I/O INTERRUPT

INTERRUPT HANDLER
IOS
SCHEDULE SRB

Note: an application file request can generate several I/O operations
depending on the number of index levels plus one for the data

CICS Dispatcher - Place task in a
wait and dispatch any other
ready to execute task

CICS TS File Control API Costs

• For read operations, the VSAM I/O cost is not included
because the need to access DASD depends on the
workload. For the read operation to complete, both the
index and data must be accessed. If the index or data are
not in a buffer, an I/O operation is required for each level
of index and one for the data.

• The relative number of instructions, in 1K instruction
counts, for the I/O for each file type is as follows:

• 9.5 for a key-sequenced data set (KSDS)

• 9.5 for an entry-sequenced data set (ESDS)

• 8.2 for a relative record data set (RRDS)

• Source CICSTS55 Performance Guide Pages 176-178

C\TREK Corporation 2019 11/12/2019 1
1

CICS TS File
Control API

Costs

C\TREK Corporation 2019 11/12/2019 12

READ

•KSDS ESDS RRDS Data Table (CMT)

•3.0 2.4 2.2 First: 1.5 Subsequent: 1.1

READ for UPDATE (Non-Recoverable)

•KSDS ESDS RRDS

•3.1 2.3 2.2

READ for UPDATE (Recoverable)

•KSDS ESDS RRDS

•5.5 4.3 4.2

REWRITE (Non-Recoverable)—has a VSAM I/O associated with
the REWRITE

•KSDS ESDS RRDS

•10.2 10.1 10.1

Source CICSTS55 Performance Guide Pages 176-178

CICS TS File
Control API

Costs

C\TREK Corporation 2019 11/12/2019 13

REWRITE

• REWRITE (Recoverable)

• KSDS ESDS RRDS

• 10.4 10.3 10.3

WRITE

• WRITE (Non-Recoverable)—has a VSAM I/O associated with the WRITE
(Does not include cost of CI/CA Split—additional Index I/O if split occurs)

• KSDS ESDS RRDS

• 12.9 11.1 10.9

WRITE

• WRITE (Recoverable)—has a VSAM I/O associated with the WRITE (Does
not include cost of CI/CA Split—additional Index I/O if split occurs)

• KSDS ESDS RRDS

• 14.9 13.1 12.9

Source

• Source CICSTS55 Performance Guide Pages 176 to 178

CICS TS File
Control API

Costs

C\TREK Corporation 2019 11/12/2019 14

DELETE (Non-Recoverable)

• KSDS RRDS

• 12.5 11.5

DELETE (Recoverable)

• KSDS RRDS

• 14.5 13.5

BROWSING

• STARTBR READNEXT READPREV RESETBR ENDBR

• 3.1 1.5 1.6 2.6 1.4

UNLOCK

• Path is 0.7

Source CICSTS55 Performance Guide Pages 176 to 178

KSDS Structure and Terms

CONTROL AREA

……

..

CONTROL AREA CONTROL AREA CONTROL AREA CONTROL AREA CONTROL AREA

I

N

D

E

X

D

A

T

A

SSI

0
SSI

1

SSI

n

IS-3

IS-2IS-2

IS = INDEX SET 2/3 – SECOND LEVEL & HIGHERSSI = SEQUENCE SET
INDEX – FIRST LEVEL

HURBA

HARBA

………

…….

11/12/2019 C\TREK Corporation 2019 15

The Robin
Hood Theory

• Tuning LSR files is simply the opposite of what
Robin Hood did in Sherwood Forest

• Robin Hood stole from the rich to give to
the poor

• In LSR you will steal from the poor to give to
the rich!!!

• Poor → low to medium activity files

• Rich →most active files

• So, the major contribution made by
low/medium activity files in LSR is to provide
their resources so that higher activity files can
use them

• Unfortunately, this is the cruel reality

Traditional LSR Tuning

11/12/2019 C\TREK Corporation 2019 17

Dynamic Versus Static Pool Definition

11/12/2019 C\TREK Corporation 2019 18

DYNAMIC DEFINITION

• Advantages
• Quick implementation and

installation
• Reduces system programmer

intervention
• No need to determine VSAM CISZ vs.

buffer size
• No need to determine the maximum

key length
• No need to determine the number of

strings needed

STATIC DEFINITION

• Advantages
• Separate buffer pools for data and

index components
• No CISZ contention between data and

index
• Can optimize for buffers that have

higher activity
• Can optimize string and maximum key

size
• Faster CICS initialization
• Can allocate Hiperspace buffers (if

applicable)

11/12/2019 C\TREK Corporation 2019 19

Dynamic Versus Static Pool Definition

DYNAMIC DEFINITION
• Disadvantages

• Possible contention between data
and index buffers (combined pool)

• Can hide bad data/index performers
• Number of strings and buffers

allocated are based on a % not on
file activity

• Can result in string over-allocation
• Slow initialization
• Cannot allocate Hiperspace buffers

(if applicable)

STATIC DEFINITION

• Disadvantages
• Requires system programming

intervention
• Need to determine # of strings, # and

buffer sizes and maximum key length
• Exposed to error
• Requires planning
• Possible solution

• 255 strings

• Max KL 255

• Define a value for all buffer sizes

LSR Pool
Definition

11/12/2019

• Recommendation

• Define LSR pools explicitly

• Initially bring the system up dynamically to get an
idea of the buffers and strings required and the
maximum key length (test environment)

• Using the buffers defined, use the definition
to define the data component

• Initially, use the same definition for the
index component

• Run transactions and determine actual
buffers used

• Using this information adjust buffers
required for the data and index components

• Ensure a definition of a safety valve buffer
of 32K, if none defined

• Use performance monitor or CICS statistics
(STAT or EOD)

• Once in production, monitor and adjust as
required

C\TREK Corporation 2019 20

LSR Pool Measurement

11/12/2019 C\TREK Corporation 2019 21

LSR pool effectiveness is measured on
look-aside hit ratios

Generally accepted ratios are:

•Data component → 80%+

• Index Component → 95%+

•Combined → 93%

Some installations have higher objectives

• Important thing is to establish what is acceptable for
your installation

Look-aside hit ratio is usually improved
by adjusting buffers assigned

Improve the index hit ratio first because you access the index
component more than the data component in direct read
operations

Total number of index CIs is lower than for the data component

Index CISZ are usually smaller in size than the data component CIs

•So, real/virtual storage required to improve index hit ratio is less

LSR Pool Measurement

• Data buffer tuning is highly dependent on the file’s access patterns

• Good look-aside hit ratios for the data component usually requires a
substantial amount of storage to obtain an 80%+ hit ratio

• The major cause is that the data component for all the files is usually
very large (vs. the index component)

• Good look-aside hit ratios usually result in files with:

• Sequential activity

• Read for Update/Rewrite/Delete activity

• Concentrated read activity

• LSR buffer look-aside % can be misleading

• The % specified does not mean that every file is getting that %
(remember Robin Hood)

• The look-aside % is the average of all the files using that buffer

C\TREK Corporation 2019 11/12/2019 22

Buffer
Allocation

• Some installations prefer to define “x” number of buffers to all 11 LSR
buffer sizes whether there is a file that can use it or not

• This results in virtual storage allocation that will not be used “day in
day out, 365 days a year, every year”

• For example, suppose you have no file that can use a 16K buffer,
but you allocated 40 buffers (640K) in case one day a 16K file
appears

• The allocation is a “magic number”, that is, you really
don’t know or predict the activity that this new file is
going to generate

• Wouldn’t it be better if you took that 640K and converted it to
thirty-two 20K buffers that will be used every day?

• If one day the file does appear, at least you have thirty-
two buffers you allocated to use for the file

• It is important to note that buffer allocation to files in LSR are not
controlled by the number of buffers assigned to the file

• A file can have more buffers assigned than the number in the FCTE
definition

String
Allocation

• Each pool can have up to 255 strings

• Usually tuned when you get a wait on strings
condition

• There are 2 types of wait on strings for LSR

• Wait on string related to the number of
strings allocated to the file

• Wait on string related to the number of
strings allocated to the pool

• String allocations are controlled by CICS

• Objective should be to have the LSR string
assignment somewhere between 50% to 60%
of the peak string usage

Maximum Key Size

• The maximum key size is 255 bytes

• As LSR control blocks are shared, the
maximum key length must be defined
(PLH control block)

• If the maximum key size specified for
the LSR pool is too small, the file will
not open

• To avoid this situation, many
installations define the maximum key
size as 255

• The actual virtual storage cost depends
on the number of strings

11/12/2019

VS Costs

11/12/2019 C\TREK Corporation 2019 26

Current LSR pool has 60 strings and a maximum KL of 100

Performed a benchmark to determine the cost of specifying the
maximum key length (255) and maximum strings (255)

• Step 1 was to recycle and use the current settings 60/100

• Step 2 was to recycle and use 255/255 for strings and maximum KL

• Difference was 195 strings and 155 bytes for the KL

Results Step 1 (MB) Step 2 (MB) Difference (KB)

• Initialization 856,568 856,216 352K

• Open all files 855,728 855,140 588K

Estimated cost

• 195 strings * 900 (PLH) → 175,500 bytes

• 195 strings * 155 (increased KL) → 30,225 bytes

• Total 205,725 bytes

Buffer
Monopolization

C\TREK Corporation 2019 11/12/2019 27

An area that must be monitored is the possibility
of a file monopolizing a buffer in a pool

• The problem is that CICS does not provide information
regarding the number of LSR buffers being used by a file

• The statistics provided indicate the activity, but this does
not translate into number of buffers

• A file could perform 100K accesses to the file, but this
does not translate into number of buffers as it could be
that the access is to one or a few buffers

Several options are there to resolve this situation

• Move the file to a separate LSR pool

• Increase the number of buffers to reach the file’s point of
Diminishing Return

• Once you reach this point, other files will have access to
buffers

What Happens
If You need to
Add a File and
the Buffers or

Max KL Are
Not Defined?

• If the required buffer and/or maximum KL is not defined:

• Use the next bigger buffer size available and open the file

• If no bigger buffer available, send message and file is not opened

• Possible solutions

• Always define 32K buffers (if not already defined) for index and
data components to protect against this happening

• Major objection is having VS that is not used

• Change the LSR pool number to one not in use and open the file
into a pool that is dynamically created

• Increase number of strings (255) to get more buffers
allocated

• If the file’s KL exceeds the maximum KL specified

• Performed a benchmark to determine the cost of specifying the
maximum key length (255) and maximum strings (255)

• If these options are not acceptable, prepare a good explanation for your
manager as to why you are going to have to recycle the LSR pool

Hiperspace
Buffers

• Hiperspace buffers were designed to use Expanded Storage (ES)

• ES worked like a very fast synchronous paging device

• ES was less expensive than real storage

• ES was 4K addressable (not byte addressable like real storage)

• z/Architecture does not support ES

• In order to maintain this functionality, ES is simulated using real
storage by z/OS

• CICS supports Hiperspace buffers in LSR

• However, you are using real storage to simulate ES

• Moving real to real overhead

• Better to allocate the equivalent Hiperspace buffers into the regular
LSR buffers

• You may want to use Hiperspace buffers under the following conditions if
enough RS exists

• You need more than 32K buffers of a specific size

• You are running low on the region VS availability

Other LSR Tuning Areas

11/12/2019 C\TREK Corporation 2019 30

Fragmentation

• Fragmentation represents the lost space due to the difference in
the CISZ and the LSR buffer assigned to handle the CI

• The major cause of fragmentation is that VSAM has 28
different CISZ available while CICS LSR only supports 11
buffer sizes

• Some data component fragmentation may be acceptable
such as using an 18K CISZ (non-VSAM/E) to obtain the best
disk utilization. In this case, you would use a 20K buffer with
a 2K or 10% cost of virtual/real storage fragmentation

• Other fragmentation is not acceptable such as using a 16K
buffer to cover a 10K CISZ because the user did not define a
12K buffer

• Adjusting the CISZ to a data component buffer size may have
some advantages. For example, increasing a CISZ from 5.5K to
use an 8K buffer

• Takes advantage of 2.5K (31%) lost virtual/real storage

• Can add or adjust free space without increasing the
amount of VS/RS used by CICS LSR

Fragmentation

• There may be some advantages to increasing the index component
size to match the LSR buffer size

• For example, increasing the CISZ from 1.5K to 2K (or 2.5K, 3K
and 3.5K to 4K)

• For large files this may reduce the number of IS index
records in the file

• Less IS records, less buffers are required in LSR to
support the file

• May provide a cushion for potential key compression
problems that may occur within the SSI of a file

• Be especially wary of using a large data CISZ (e.g., 26K) for
large files that result in VSAM assigning a small index CISZ
(e.g., .5K)

• This may result in more IS records requiring more LSR
buffers to support the file

• Recommendation: Ensure that you do not have the bad
fragmentation in your LSR pool

KSDS Structure and Terms

CONTROL AREA

……

..

CONTROL AREA CONTROL AREA CONTROL AREA CONTROL AREA CONTROL AREA

I

N

D

E

X

D

A

T

A

SSI

0
SSI

1

SSI

n

IS-3

IS-2IS-2

IS = INDEX SET 2/3 – SECOND LEVEL & HIGHERSSI = SEQUENCE SET
INDEX – FIRST LEVEL

HURBA

HARBA

………

…….

11/12/2019 C\TREK Corporation 2019 33

Control Interval Size (CISZ) vs. Buffer
Size

VSAM LSR POOL LSR HIPERCACHE VSAM RLS (Cache/Memory)
0.5K 0.5K 4.0K 2.0K
1.0K 1.0K 8.0K 4.0K
1.5K 2.0K 12.0K 6.0K
2.0K 4.0K 16.0K 8.0K
2.5K 8.0K 20.0K 10.0K
3.0K 12.0K 24.0K 12.0K
3.5K 16.0K 28.0K 14.0K
4.0K 20.0K 32.0K 16.0K
4.5K 24.0K 18.0K
5.0K 28.0K 20.0K
5.5K 32.0K 22.0K
6.0K 24.0K
6.5K 26.0K
7.0K 28.0K
7.5K 30.0K
8.0K 32.0K

10.0K
12.0K
14.0K
16.0K
18.0K
20.0K
22.0K
24.0K
26.0K
28.0K
30.0K
32.0K

Note the possibility of buffer fragmentation due to the differences

in VSAM CISZ availability vs. CICS TS LSR Buffer availability

RLS Information: Terri Menendez “VSAM RLS Best Practices”

VSAM Cluster → Possible 28 possibilities

CICS LSR Definitions → 11 possibilities

CICS LSR Hipercache Definitions → 8 possibilities

VSAM RLS Cache/Memory → 16 possibilities

11/12/2019 C\TREK Corporation 2019 34

Buffer Page
Boundary

Alignment

• This is a minor recommendation to avoid fragmentation

• LSR buffers are allocated in 4K increments on a 4K
boundary

• Small buffer sizes should be allocated in multiples of 4K

• .5K buffer →multiple of 8 (8 * .5K = 4K)

• 1K buffer →multiple of 4 (4 * 1K = 4K)

• 2K buffer →multiple of 2 (2 * 2K = 4K)

• For example, supposed you requested ten .5K buffers.
LSR would allocate 8K of which it would use 5K losing 3K

• Increasing the allocation to 16 buffers would gain 6
additional buffers without increasing the amount of
storage

Number of
LSR Pools

11/12/2019 C\TREK Corporation 2019 36

• School 1 → use as many pools as possible so files
can be segregated to reduce buffer contention
and/or interference

• School 2 → define as few pools as possible
(preferably 1) so that resources can be used more
efficiently

Two schools of
thought on this
issue (could be

more)

• LRU algorithm works best with a larger number of
buffers

•Do you allocate a “fudge factor” to each pool’s
definition?

•Are the files continuously used? What happens to
the resources when the file is in low activity?

•Unless you are using VSAM threadsafe, access to
the different pools are single threaded via the QR
TCB

Considerations

Number of LSR Pools

11/12/2019 C\TREK Corporation 2019 37

There are 255 LSR pools available in
CICS TS

Originally, access to the LSR buffers used a
sequential search which required more CPU when
you increased the number of buffers

• So, you were given 8 pools to distribute this load

Access to the LSR buffers was changed and now
uses a hashing algorithm that eliminates the
concern over the length of the search caused by
number of buffers

Remember LSR is Local Shared
Resources

Everyone contributes to the sharing of resources

Number of LSR
Pools

11/12/2019 38

• When should we consider using more pools?

• Data Tables

• Any output operations go against the VSAM file

• LSR pool is used for look-aside before going to the disk

• ROT = 90%+ activity should be read/browse operations

• Problem – due to the low activity of a data table going
to the LSR pool, the odds are very high that the file’s
buffer are no longer in the LSR pool forcing an access to
disk

• So, you should define all your data tables into a
separate pool where they only compete with other
data tables for the LSR buffers

• VSAM threadsafe files (multiprocessor environment)

• You are not limited to only using QR TCB and can use
an L8/L9 TCB

• To attain overlap access you would need to separate
files across several pools

C\TREK Corporation 2019

LSR Pool Non-
Candidates

C\TREK Corporation 2019 11/12/2019 39

SHARE Option 4 files should not be in LSR

• Direct reads require the reading of the CI from
disk ignoring the fact that the CI is already in a
buffer

Files that do not follow Command Level
Guidelines

• STARTBR, READNEXT, READNEXT etc. READ for
UPDATE (non-RLS)

Files with a very high CA split activity

• Use NSR to add BUFND to accelerate split

• Cost maybe lower look-aside hit ratio

Hidden Tuning Areas

11/12/2019 C\TREK Corporation 2019 40

VSAM CA Size

11/12/2019 41

• CA size (CASZ) is an important tuning option

• CASZ is indirectly defined through the primary and secondary allocation

• Bad CASZ can occur for any file that is incorrectly defined

• However, it is more prone to happen for small files (less than 1
cylinder)

• Valid CASZ

• Track Managed Storage (TMS) → 1 to 15 tracks

• Striped Data Set → 16 tracks

• Cylinder Managed Storage (CMS) → 1, 3, 5, 7, 9 and 15 tracks
(EAV – Extended Address Volumes)

• Multi Cylinder Units (MCU) → 21-cylinder allocations
(315 tracks)

• Incorrect setting of the CASZ can result in unnecessary index CIs

• Unnecessary index CIs would require buffers

• The rule you must remember is that all data CAs must be the same size
throughout the file (primary and secondary)

• If requested space is in CYLINDERS, the CASZ will be 1 cylinder

• If requested in TRACKS, use the Highest Common Denominator

• Be careful when using RECORDS, can lead to bad CASZ

C\TREK Corporation 2019

VSAM CA Size

11/12/2019 42

• Request space in cylinders

• If you need to ask space for a small file in tracks, make
the primary = the secondary to ensure the maximum
CASZ to reduce the number of indices

• Examples

• TRACKS (7 7)

• TRACKS (3 3)

• TRACKS (10 10)

• If requesting space in RECORDS, make sure the primary
and secondary generate the maximum CASZ

• Uses the Average Record Length to determine the
space

• Do you really know what the average record length
is for a variable file?

C\TREK Corporation 2019

VSAM CA Size

11/12/2019 C\TREK Corporation 2019 43

TRACKS (3 1) → If all three tracks are used, generates 2 index levels and 4 index records
Requires 4 index buffers

IS - 2

SSI - 1 SSI - 1 SSI - 1

TRACKS (3 3) → If all three tracks are used, generates 1 index level and 1 index record
Requires 1 index buffer

SSI - 1

CI/CA Splits

C\TREK Corporation 2019 11/12/2019 44

CI/CA splits are the result of adding new records or extending the
length of variable length records

Splits result in physical I/O operations

• CI splits – several

• CA splits – many

• The Good, the Bad and the Ugly

• The Good – VSAM file can continue to operate accepting the split

• The Bad – many I/O operations can result, especially for a CA split

• The Ugly – if an extent needs to be acquired …

Besides the actual number of physical I/O operations required to
service the split, the cost of adding a new extent (data and/or index)
because of additional I/O activity to the catalog, VVDS and VTOC

CI/CA splits can create free space that cannot be used or has a very
low possibility of being used

CI/CA Splits

C\TREK Corporation 2019 11/12/2019 45

However, there is a hidden cost to CI/CA
splits that is not normally discussed

CI splits take a single CI and convert it to two
CIs which are approximately 50% filled

• Instead of being able to access the data in one buffer,
you now would need two buffers (half-full) to access
the same amount of data

• This is a hidden cost of CI splits

• Important for most active files

CA splits come as a result of not having a free
CI in the CA, causing the CA split

• However, splits can also affect the index component
requiring additional indices and therefore, more LSR
buffers

CI/CA Splits

11/12/2019

• Recommendations

• Best defense against splits is % of free space allocated

• Can help defer/reduce splits

• Ensure that % free space allocated will result in
saving space to store a record in the CI or leave a
free CI in the CA

• Analyze if changing the CISZ combined with a
different free space can help reduce splits

• Reorganization

• Reorganizing the file will eliminate the splits but
….

• You may wind up with taking splits again
because you eliminated the free space
created by the splits

• The major keys that indicate that you may
want to reorganize are:

• CI splits represent 30% of the file

• CA splits represent 30% of the file

• Total free space within the HURBA
exceeds 30%

C\TREK Corporation 2019 46

Extents

• VSAM allows for a file to have multiple extents

• Extent processing has improved over time (Space
Constraint Relief –DFSMS)

• 123 extents per volume

• Total number of extents 7,257 (123*59)

• Extent consolidation

• The cost of an extent occurs when obtaining an extent
because the process involves accessing and updating the
catalog, VVDS and the VTOC

• The data set is serialized during a CI/CA split while the
extent is being processed

• The data set is serialized for CI/CA splits/reclaims
for VSAM,

• The data set is serialized for CA splits/reclaims for
RLS

• This can take time depending on the workload

Note: Many thanks to Ms. Terri Menendez of IBM for providing valuable information for this section

Extents

• However there is an additional hidden cost processing the data set

• Each extent results in a control block called an EDB (Extent
Definition Block) that consists of a header (X’20’ bytes long)
and an entry for each extent (X’20 bytes long)

• Contains extent information starting/ending CCHH and
starting/ending RBA

• These extents have a pointer to another control block LPMB
(Logical to Physical Mapping Block) (X’28’ bytes long)

• Physical characteristics of the device

• CA size in tracks

• # of CIs per CA

• Physical record size

• # Physical records per track

• To reduce the overhead of searching for the correct EDB,
VSAM creates an extent index control block

• Works like a hashing technique used by CICS

Extents

• DSN DFHCMACD CICSTS55.DFHCMACD BASE CLUSTER

• CL DATA NAME CICSTS55.DFHCMACD.DATA LOCAL

• CL INDX NAME CICSTS55.DFHCMACD.INDEX VARIABLE BLOCKED

• VSAM KSDS OPEN ENABLED READ

• DATA EXTENTS 8 DEVICE 3390 TOTAL TRACKS ALLOC 285

• XTN STR-CCHH END-CCHH START-RBA END--RBA TRACKS VOLID UCB-ADDR UNIT

• 0 01040000 010F000E 0 9,215,999 180 OSW00G 0256DCE8 0D90

• 1 00510000 0051000E 9,216,000 9,983,999 15 OSW00G 0256DCE8 0D90

• 2 00730000 0073000E 9,984,000 10,751,999 15 OSW00G 0256DCE8 0D90

• 3 00780000 0078000E 10,752,000 11,519,999 15 OSW00G 0256DCE8 0D90

• 4 00980000 0098000E 11,520,000 12,287,999 15 OSW00G 0256DCE8 0D90

• 5 00CE0000 00CE000E 12,288,000 13,055,999 15 OSW00G 0256DCE8 0D90

• 6 00CF0000 00CF000E 13,056,000 13,823,999 15 OSW00G 0256DCE8 0D90

• 7 00D20000 00D2000E 13,824,000 14,592,000 15 OSW00G 0256DCE8 0D90

EXTENTS
7F2E2EE8 00000000 90000020 00000008 00000000 00000000
7F2E2EF8 00000010 00000000 00000000 0000E400 7F2A90D8U."..Q
7F2E2F08 00000020 01040000 010F000E 00000000 0000012B
7F2E2F18 00000030 0256DCE8 00000000 0000E400 7F2A90D8 ...Y......U."..Q
7F2E2F28 00000040 00510000 0051000E 0000012C 00000144
7F2E2F38 00000050 0256DCE8 00000001 0000E400 7F2A90D8 ...Y......U."..Q
7F2E2F48 00000060 00730000 0073000E 00000145 0000015D)
7F2E2F58 00000070 0256DCE8 00000002 0000E400 7F2A90D8 ...Y......U."..Q
7F2E2F68 00000080 00780000 0078000E 0000015E 00000176;....
7F2E2F78 00000090 0256DCE8 00000003 0000E400 7F2A90D8 ...Y......U."..Q
7F2E2F88 000000A0 00980000 0098000E 00000177 0000018F .q...q..........
7F2E2F98 000000B0 0256DCE8 00000004 0000E400 7F2A90D8 ...Y......U."..Q
7F2E2FA8 000000C0 00CE0000 00CE000E 00000190 000001A8y
7F2E2FB8 000000D0 0256DCE8 00000005 0000E400 7F2A90D8 ...Y......U."..Q
7F2E2FC8 000000E0 00CF0000 00CF000E 000001A9 000001C1z...A
7F2E2FD8 000000F0 0256DCE8 00000006 0000E400 7F2A90D8 ...Y......U."..Q
7F2E2FE8 00000100 00D20000 00D2000E 000001C2 000001DA .K...K.....B....
7F2E2FF8 00000110 0256DCE8 00000007 00000000 00000000 ...Y............

7F2A90D8 00000000 91880028 00000019 0000C800 00002800 jh........H.....
7F2A90E8 00000010 000F000F 00050003 004B0C00 0000FF20
7F2A90F8 00000020 00062F58 81AAD300 32C9C4C1 D4D9C5E3a.L..IDAMRET

X’12C’ * X’7800’ = X’8CA000’ → 9,216,000

EDBs

EDB Header

LPMB

11/12/2019 C\TREK Corporation 2019 50

Extents

• Avoid taking new extents online

• Ensure proper space allocation

• Specifically, make sure you are not meek
requesting secondary allocations

• For example, avoid requests like CYL(200 2)

• Instead CYL(100 25)

• If you are going to pay the price of a new
extent, make sure you get enough space to
avoid coming back continually

• Try to reduce CA splits by requesting proper Free
Space %

• May require changing the data component CISZ

• Reorganize the file to improve the free space
allocation and/or the data component CISZ

Free Space
Example

11/12/2019 C\TREK Corporation 2019 52

• A 4K CISZ results in 180 CI/CA

• 25% CI free space (4096 * .25 =
1024) or one free record per CI

• This results in leaving space for
180 records per CA (180 * 1)

Current file
has a 4K CISZ
with a CI free
space of 25%
and a fixed

record length
of 1000

• An 18K CISZ results in 45 CI/CA

• 22% CI free space (18432 * .22
= 4055) or 4 free records per CI

• This results in leaving space for
180 records per CA (45 * 4)

Change the
file CISZ to

18K and a free
space of 22%

Free Space
Example

• Space Requirement 4K

• Records/CI = (4096 – (4096 * .25) - 10) / 1000 = 3

• CIs required = (100000 / 3) = 33333.33 → 33334

• Cylinders required = (33334 / 180) = 185.18 → 186
cylinders

• Space requirement 18K

• (Records/CI = (18432 – (18432 * .22) – 10) / 1000 =
14

• CIs required = (100000 / 14) = 7142.857 → 7143

• Cylinders required = (7143 / 45) = 158.73 → 159
cylinders

• Difference 186 – 159 = 27 cylinders less or 14.5% space
cylinders

CLOSING

11/12/2019 C\TREK Corporation 2019 54

Closing

11/12/2019 C\TREK Corporation 2019 55

Due to its better look-
aside capability

especially in the index
component, use LSR

over NSR

Tune buffers to
increase the look-
aside hit ratio

• Ensure proper number of
buffers are defined

• Reduce fragmentation

• Static pool definitions

• Watch out for splits

You should look at the
LSR statistics to gauge

the look-aside hit
ratio especially after
application changes

Part of the tuning for
LSR involves tuning
VSAM data sets

• CISZ

• CASZ

• Free space %

• Extents (space allocations)

Questions

11/12/2019 C\TREK Corporation 2019 56

