
Debugging CICS Storage
Violations Using IPCS

Ezriel Gross, Rocket Software
egross@rocketsoftware.com

Tuesday, November 16, 2021

11:30 AM-12:30 PM EST

Agenda

2

1

2

3

CICS Storage Management

What is a storage violation?

Causes of storage violations

4
Protecting Storage in CICS

CICS Provided Facilities

5 Storage Manager internals

6 Storage violation dump analysis

Useful domains for debugging Storage violations

IPCS Commands to view relevant domain summaries and data

CICS Storage
Management

4

CICS Storage management: Address Space

CICS V5
“A 64-bit address space is 8 billion times the size of a

2-gigabyte address space”

MEMLIMIT: Limited the amount of usable virtual storage

available to an address space in the above the bar low

& high user regions

REGION: Limits the amount of virtual storage available in the

below the bar user region & extended user region

16 Exabytes

512 Terabytes

2 Terabytes

288 Gigabytes

32 Gigabytes

2 Gigabytes

High User Region

Default Shared

Memory Addressing

Common Area

Local System Area

Reserved for Java

Extended User Region

Lower User Region

User Region

264

249

241

238

235

231

232

224

The Bar

5

CICS Storage management: Dynamic Storage

CICS Initialization sets GDSALIM

to MVS MEMLIMIT value

If MEMLIMIT is below 10 Gb CICS

Abend with DFHSM0602

CICS Initialization reserves 31-bit

virtual storage based on EDSALIM

CICS Initialization reserves 24-bit

virtual storage based on DSALIM

GDSALIM=MEMLIMIT

GSDSA

ECDSA

264

238

231

224

GUDSA

GCDSA

EUDSA ETDSA

ESDSA

EDSALIM

DSALIM

6

CICS Storage management: DSAs

7

CICS Storage management: DSA Extents

DSA Extent Size=

256KB – If

TRANIS0 = YES.

Then UDSA = 1MB

EDSA Extent

Size = 1MB

DSALIM EDSALIM

Extent

8

CICS Storage management: DSA Control Blocks

GDSALIM=MEMLIMIT

GSDSA

238

231

224

Grande PPX Cell Pool

x1

EDSALIM

x2

x5

x3

x6

x4

Grande PPX Cell Pool

GCDSA

Grande PPX Cell Pool

Grande Control Area Cell Pool

SMA

PPA.ECDSA

PPX.ECDSA (x1)

PPM.ECDSA (x1)

PPA.CDSA

PPX.CDSA (x1)

PPM.CDSA (x1)

PPA.EUDSA

PPX.EUDSA (x1)

PPM.EUDSA (x1)

PPA.UDSA

PPX.UDSA (x1)

PPM.UDSA (x1)

PPA.ERDSA

PPX.ERDSA (x1)

PPM.ERDSA (x1)

PPA.RDSA

PPX.RDSA (x1)

PPM.RDSA (x1)

PPA.ESDSA

PPX.ESDSA (x1)

PPM.ESDSA (x1)

PPA.SDSA

PPX.SDSA (x1)

PPM.SDSA (x1)

PPA.ETDSA

PPX.ETDSA (x1)

PPM.ETDSA (x1)

GPPX.GSDSA GPAM.GSDSA

GPPX.GUDSA GPAM.GUDSA

GPPX.GUDSA GPAM.GUDSA

TS20626

GPPA.GCDSA GPPA.GUDS GPPA.GSDSA

GUDSA

9

CICS Storage management: Control Blocks

PPA
SQE

PPX

PAM

SMX
Domain

SCA

SCE

SCF

SCE SCF

(E) DSA

QPH

TASK

SCA

XMT xn

Storage

Extents

Storage Manager Anchor Block

SCE/SCF- Used for Variable Storage

QPH- Used for Fixed Length Storage

10

Domain subpools versus task subpools

Domain subpools

Domain subpools tend to get allocated early on in CICS initialization

and remain allocated for the life of CICS. The domain subpool ids

are not fixed and can change on any run of CICS.

Life of task storage

➤ Task subpools are dynamically created and deleted for each

task in the system as required.

➤ The task subpool ids are fixed for any run of CICS.

Let’s have a look at a dump and see

What is a storage
violation?

12

CICS DSAs used for life of task storage

➤ CICS manages storage in DSAs above the Bar (not shown), above the line and
below the line

➤ Only the User and CICS DSAs can contain task lifetime storage with storage
violation detection facilities

➤ TASKDATAKey = User | CICS TASKDATALoc = Below | Any

ESDSA ECDSA ERDSA ETDSA

SDSA CDSA RDSAUDSA

EUDSA

16m

13

CICS will
allocate 6 task
subpools for
every task in
the system

Each subpool is
for either the
User or CICS
DSA in all
locations (Above
/ Below)

These subpools
are exclusive to
the task for
transaction
storage requests

The subpool
names are 8
characters long,
a letter followed
by the task
number

The subpool
name is reused
for the Storage
Check Zone
(SCZ)

Task subpools

14

Storage Check Zones - SCZ

M 0075458

Subpool ID Transaction Number

M = CICS Macro Below

C = CICS Above

B = User Below

U = User Above

G = CICS Above the Bar

H = USER Above the bar

15

Storage Check Zones - SCZ

➤ Allocated task storage will contain an extra 8 bytes on the front and back end

➤ These areas are known as Storage Check Zones or SCZs

➤ The are used to assist with storage violation detection

SCZ SCZData

➤ CICS will only check for storage overlays when the areas are being freed

➤ If the front and back SCZ do not match the SCA, then a storage violation is detected

➤ An SVC dump may be produced if set in the CICS dump tables

➤ If the SIT parameter STGRCVY = YES is coded CICS will fix the storage area

➤ If STGRCVY = NO the storage and task are frozen for the life of that CICS run

16

Storage Account Areas (SAA)

➤ There is an old format in use for a check zone called an SAA.

➤ Its use is limited to TIOA areas.

➤ SAAs are 8 bytes long and are used like SCZ for storage violation detection.

➤ GETMAIN address is of the leading SAA.

➤ Point to the current TIOA is in the TCTTE + x’0C’

➤ Not covered in this presentation

X85’ Length Chain Pointer

17

Types of Storage violations

Task 1 Task 2

CICS Domain

Storage or

Unallocated storage

Simple Overlay

Complex

Undetectable

Undetectable Complex

Causes of storage
violations?

18

19

Some causes of Storage Violations

Hand posting
ECBs for
cancelled or
terminated tasks

User programs
with incorrect
lengths

GETMAIN

TWA / CWA

TCTUA

DFHCOMMAREA (length
mismatch)

Linkage Section areas

Accessing
storage w/o
proper
addressability

Task / storage availability

Not clearing FREEMAINed
pointer

Writing to areas already
FREEMAINed

Invalid address as a result
of a SET failure

Un-initialized pointers

Maintaining pointers
beyond limit

Incorrect index /
subscript value

Runaway index / subscript

No editing of index /
subscript

Protecting storage
in CICS

20

21

Read only program storage

➤ CICS loads programs that are reentrant in the ERDSA or RDSA based on the DAtalocation
parameter in the program definition.

➤ Non-reentrant programs are loaded in either the ESDSA or the SDSA.

➤ CICS key programs are loaded in the ECDSA / CDSA when non-reentrant.

➤ SIT: RENTPGM = {PROTECT|NOPROTECT} KEY = 0 / 8

ESDSA ECDSA ERDSA ETDSA

SDSA CDSA RDSAUDSA

EUDSA

16m

KEY= 0 / 8

Subsystem storage protection

➤ Subsystem storage protection separates user storage from CICS key storage.

➤ Works with the EXECKey= USER | CICS parameter on a program definition.

➤ Prevents a user program from overlying CICS key storage.

➤ SIT: STGPROT={NO|YES} KEY = 8 / 9

ESDSA ECDSA ERDSA ETDSA

SDSA CDSA RDSAUDSA

EUDSA

16m

KEY= 8 / 9KEY= 8 / 9 KEY= 8

23

Transaction Isolation

Only applies to UDSA and EUDSA

Base Space

EXECKEY=CICS

Common Subspace

EXECKEY=USER

ISOLATE=NO

Unique Subspace

EXECKEY=USER

ISOLATE=YES

Base Space

264

231

224

Unique

Subspace

1

Unique

Subspace

2

Common

Subspace

Unique

Subspace

X

C 2 X1

24

CICS command protection

SIT: CMDPROT= {YES | NO }

➤ Used to ensure that CICS was not given an invalid address in a
command which could overlay an area that did not belong to the user.

➤ CICS checks the first byte of an INTO area to make sure the user has
access to it.

➤ CICS checks the address provided for SET commands as well.

Storage protection(s) will only help they do not solve all violations

Storage manager
internals

25

26

DSA page and extent summary

➤ Extent and page sizes change

depending on the TRANISO

SIT parameter.

➤ EUDSA uses the storage

short and critical of 256k and

128k for the storage cushion.

➤ UDSA extent minimum

becomes 1m instead of 256k,

but page remains 4k.

➤ EUDSA extent is always a

minimum of 1m, but page goes

from 64k to 1m.

Traniso = Yes Traniso = No Cushion

PAGE

SIZE

EXTENT

MULTIPLE

PAGE

SIZE

EXTENT

MULTIPLE
SIZE

CDSA 4k 256k 4k 256k 64k

UDSA 4k 1m 4k 256k 64k

SDSA 4k 256k 4k 256k 64k

RDSA 4k 256k 4k 256k 64k

ECDSA 4k 1m 4k 1m 128k

EUDSA 1m 1m 64k 1m 0k

ESDA 4k 1m 4k 1m 128k

ERDSA 4k 1m 4k 1m 256k

ETSDA 4k 1m 4k 1m 128k

GCDSA 1m 1g 1m 1g 128m

GUDSA 1m 1g 1m 1g 0m

GSDSA 1m 1g 1m 1g 128m

DSA Summary

27

Storage Manager transaction control block

➤ The Storage Manager

Transaction (SMX) is the

anchor for all task related

subpools.

➤ It is chained off the SM Anchor

and the Transaction Manager

XMTxn control block.

➤ It is summarized by task in the

IPCS VERBX ‘SM=1’ and

addressed in ‘XM=1’

summaries.

SM Transaction Block

x’00’ Eyecatcher SMX

x’04’ Address of Next SMX

x’08’ Address of Prev SMX

x’0C’ Address of SUA if isolated

x’10’ Flags

x’14’ Transaction Number

x’18’ Address of TMTxn

x’20’ Address of CICS24 SCA

x’24’ Address of CICS31 SCA

x’28’ Address of USER24 SCA

x’2C’ Address of USER31 SCA

x’30’ Address of CICS64 SCA

x’38’ Address of USER64 SCA

x’40’ Transaction ID

Mxxxxx

Cxxxxx

Bxxxxx

Uxxxxx

Gxxxxx

Hxxxxx

28

Task variable length SCAs, SCEs and SCFs

➤ The SCA is an anchor for
storage a particular subpool,
IPCS VERBX ‘SM=3’.

➤ SCEs represent allocated
storage, chained in recently
acquired to oldest sequence

➤ SCFs represent free storage
remaining in the page,
chained in address
sequence.

➤ In IPCS SCEs and SCFs
come right after their
associated SCAs.

SCA

x’00’ Name

x’08’ @Next SCA

x’0C’ @Prev SCA

x’10’ Flags: x’80’ Quickcell

x’11’ DSA Access

x’12’ DSA Index

x’18’ Quickcell Related Fields

x’60’ @1st SCE

x’68’ @Last SCE

x’78’ @1st SCF

x’80’ @Last SCF

x’94’ @PPA

x’A7’ Usage x’01’ Task x’02’ Domain

x’A8’ Chaining x’01’ Fixed x’02’ Variable

x’A9’ Type x’01’ Fixed x’02’ Variable

x’AA’ Subpool ID

x’C0’ @SMX

x’C4’ @Subspace Area

SCE

x’00’ @Next SCE

x’08’ @Previous SCA

x’10’ @Allocated Area

x’14’ Length of Allocated Area

x’18’ @PPX

x’20’ Getmain TOD

x’28’ Transaction Number

x’2C’ Tranid

SCF

x’00’ @Next SCF

x’08’ @Previous SCF

x’10’ @Free Area

x’14’ Length of Free Area

x’18’ @PPX

x’1C’ Reserved

29

Task variable length SCAs, SCEs and SCFs

example of the SCE/SCF

chain for task storage.

SCE Length 2.5k

SCE Length 3.5k

SCE Length 3.0k

Task SCA

SCF Length 2.0k

SCF Length 1.0k

SCZ

SCZ

SCZ

SCZ

SCZ

SCZ

Free Area 2.0K

Free Area 1.0K

4k Pages

Total 12K

PD12023

30

Allocated storage: Notes

➤ The address in an SCE points to the SCZ which matches the subpool name.

➤ The GETMAIN address points to the first byte of the user area (@SCZ + 8).

➤ This is important to remember when looking at CICS Trace in available.

➤ Recall that an SCZ is appended on the front and back end of user storage.

➤ Therefore, the size of the GETMAIN will be at least 16 bytes longer.

➤ GETMAINS are rounded on a 16-byte boundary, minimum GETMAIN is 32 bytes.

➤ There are no chain pointers in SCZs, nothing to break like the old SAAs.

➤ CICS checks virtual storage on FREEMAIN or task end.

➤ If front and backend SCZ do not match SCA value a storage violation is detected.

➤ Task may end normally or may ABEND, if ABEND, look a transaction dump.

Storage violation
dump analysis

31

32

So where do we start?

• Exception Trace cannot be turned off so we can always start there

• In the SM0102 dump use option 6 and type:

➤ VERBX DFHPDvrm ‘TR=3,TRS=<EXCEPTION>’ (CICS v5.6 vrm is 730)

➤ Find *EXC* 15 Last

• That should take you to the last Exception entry our storage violation

• A simple internet search on the trace point id (SM 0F0C) returns

SM 0F0C DFHSMAR Exc Storage check failure

1 SMAR parameter list
2 Address of storage element
3 Length of storage element
4 First 512-bytes (max) of storage element
5 Last 512-bytes (max) of storage element
6 Data preceding storage element (1K max)
7 Data following storage element (1K max)

• Record the violated address and length from items 2 & 3

• Review items 4 & 5 to find out the SCZ value that was overlaid

33

Dump Summary

• Every time VERBX is used under option 6 a Dump Summary is the first area
displayed in the view.

• In the case of a storage violation, it will have details about the transaction.

• In the message we can see the message code, APPLID, Transaction id, Task
number and message.

• In the message itself is the code x’0F0C’ which is our *EXC* message.

34

Transaction related trace
• If trace is turned on and the trace table is large enough, we can find the original GETMAIN

requested for the violated storage within the tasks trace.

➤ VERBX DFHPDvrm ‘TR=1,TRS=<TASKID=xxxxxxx>’ (xxxxxxx is task#)

➤ FIND the address of the violated storage +8 (Address after SCZ)

• Note the trace entry number of the GETMAIN response and re-issue:

➤ VERBX DFHPDvrm ‘TR=1’

➤ FIND the trace entry number (=0923083 in our case)

• Page forward till you hit the *EXC* SV trace entry noting all the task numbers.

• If no other task ran, or only system tasks then this is a simple overlay.

• Note the programs, LINKs and LOADs one of them is the culprit.

• Also, check if the transaction completed successfully or abended.

35

Other useful Domains
• Other domains may or may not contain data for the violated task, it will depend on whether the

TCA storage has already been freed.

➤ Try: VERBX DFHPDvrm ‘AP=1’ or ‘APS=<TASKID=xxxxxxx>’

• If the task is not present the storage has already been freed, if this violation occurred at a
FREEMAIN, we would see data.

• If present, then another area of interest is Program Manager.

➤ Try: VERBX DFHPDvrm ‘PG=1’ → then FIND ‘PTA Summary’

• It will give you details of the program link stack as well as commarea addresses and pointers to
Channel/Container storage.

• If not, the Transaction Manager will still have some details of the transaction.

➤ Try: VERBX DFHPDvrm ‘XM=1’

• Using VERBX DFHPDvrm ‘KE=1’ will show you the running task and its stack storage but will
not have the details of the task if the TCA was freed.

36

Finding the violated storage

• Finding the extent of the violation and reviewing the data in the area can sometimes lead to
quicker resolution of the error.

➤ Issue: VERBX DFHPDvrm ‘SM=2’ (we saw ‘SM=1’ summary earlier)

➤ Next: FIND SCA.ZXXXXXXX where ZXXXXXXX is the SCZ of the violated storage

• Following the SCA will be a list of SCEs and SCFs, go to the last SCE.

• Move upward through the SCEs till you find the address and length of the violated area. The
address is at X’10’ in the SCE and the length is at X’1C’.

• Based on whether the front end SCZ or backend SCZ or both are violated, check the storage
around the violated area to find the complete violation.

• On the command line issue: IPCS LIST address LEN(x’length’) to keep your position in the
current page but jump to the storage. Using PF3 will take you out of storage and back to where
you left off.

• This way you can easily see the SCZ at the top and bottom of the area.

37

Storage Violation Trap (CSFE)

• CICS has a built-in storage violation trap know as CSFE.

• Turned on via the SIT: CHKSTSK=CURRENT or CHKSTRM=CURRENT

• Manually as a transaction via: CSFE DEBUG, CHKSKxx=CURRENT

• Checks all SCZs on the transaction storage chain for the currently running task, before any
GETMAIN/FREEMAIN activity.

• Requires trace to be active overhead is higher for all running tasks.

• Produces an SM0103 dump, with a different *EXC* trace such as SM 0932.

• It turns itself off when a violation is detected, by default, a dump is produced.

• Will catch a violation within a period closer to when it occurred.

• Last resort as the overhead can be quite high.

38

Summary

• Storage violations are still the most common failure type for CICS.

• Use the storage protection features available in CICS to reduce the detectable and undetectable
storage violations.

• When they occur, try and identify the entire violation area to see if the data is recognizable from
an application perspective.

• Try and identify all programs that ran from the time of the GETMAIN till the violation, one of them
must be the culprit.

• Use the storage violation trap CSFE sparingly to help identify the failure closer to when the
overlay occurred.

• When all else fails, IBM is always ready to help!

Your feedback

is important!

