tomd@themisinc.com

www.themisinc.com/webinars

> PDF

2 Themis

PROGRAM

2 Themis

05
a5
05
05
05
05
05
05
05

MQ Usage in a COBOL Program

WORKING-STORAGE SECTION:

01 MQ-STRUCTURES.
COPY CMQODV.
COPY CMOMDV.
COPY CMOGMOV.
COPY CMOPMOV.
COPY CMOV SUPPRESS.

01 WS-VARIABLES.

MQ-HCONN
MG-HOB3-I
M(Q-HOBI-0O
MQ-OPTIONS
MQ-MSGIN-LENGTH
MOQ-MSGOUT-LENGTH
MO-DATA-1 EMNGTH
MQ-COMPCODE
M(-REASON

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

59(9)

0oy
2IFJ

59(9)
S9(9)
59(9)
S9(9)
s9(9)
S9(9)
59(9)

BINARY
BINARY
BINARY
BINARY.
BINARY
BIMNARY
BIMNARY
BINARY.
BINARY.

VALUE
VALUE

VALUE

VALUE
VALUE

Five copy statements necessary for all MQ application programs.

= o=]

80.

The WS_VARIABLES are those required at a minimum in supportthe application program.

2 Themis

Each application program which will execute using MQ call statements require a few basic inclusions of
generated code. The COPY shown are the one required by all applications using MQ functions. We have

suppressed the list of the CMQV structure since it is over 20 pages of COBOL variable constants.

The WS-VARIABLES are the minimum necessary to support bot getting and putting messages from and to
queues. The MQ-CONN would normally be the handle acquired by an MQCONN function, but that call along
with the MQDISC call are ignored by CICS / MQ interface. It is CICS itself that has performed the MQCONN to

the queue manager.

The MQ-HOBJ-I and MQ-HOBJ-O represent the handles, acquired on MQOPEN for a queue, used to specify
which queue the other calls relate to. The MQ-COMPCODE and MQ-REASON are the variables which the

application must test after every MQ call to determine its success.

MQ Usage in a COBOL Program
WORKING-STORAGE SECTION (cont.):

01 MQ-MSGOUT.

05 MQ-MSGOUT-ACTION PIC X(1).

05 MQ-MSGOUT-ITEMNO PIC 9(6).

05 MQ-MSGOUT-QTY PIC 9(7).

05 PIC X(66) VALUE SPACES.

01 MQ-MSGIN.

05 MQ-MSGIN-ITEMNO PIC X(6).

05 MQ-MSGIN-DESC PIC X(25).
05 MG-MSGIN-UNITP PIC 59(3)Vv99S.
05 MQ-MSGIN-QTYOH PIC 59(7).
05 MQ-MSGIN-QTYSHIP PIC S9(7).
05 MQ-MSGIN-QTYBORD PIC 59(7).
05 MQ-MSGIN-ACTION PIC X(7).

05 MO-MSGIN-ORDOTY PIC SO(7).
05 PIC x(9).

Simple input and output message areas in WORKING STORAGE.

ual message areas ex

tu ce . ¥y U
and their storage acquired by a CICS GETMAIN command.

2 Themis

This slide contains the message input and output areas used on the MQGET and MQPUT calls. Our messages
are rather simple and limited in size. SO we have put the data areas in the WORKING-STORAGE SECTION.
Many times you will have these as copy books rather than native COBOL variables.

Since the WORKING-STORAGE area is being copied for each task using the program, we recommend that
larger messages areas be put into the LINKAGE SECTION. Here we use a size of 200-300 K as a suggestion.
However, that size will vary depending upon your CICS environment. When the application is using message
areas in the LINKAGE SECTION, it will be responsible to perform a CICS GETMAIN command to acquire the
storage for the message area.

MQ Usage in a COBOL Program
PROCEDURE DIVISION:

MOVE CA-REQCODE TO MQ-MSGOUT-ACTION
MOVE CA-REQITEM TO MQ-MSGOUT-ITEMNO
MOVE CA-REQQTY TO MOQ-MSGOUT-QTY

MOVE MQ-OBJECT-0O TO MQOD-0BJECTNAME

MOVE SPACES TO MQOD-0BJEC TOMGRNAME

MOVE MOMT-REQUEST TO MOMD-MSGTYPE

MOVE MQ-0OBJECT-I TO MQMD-REPLYTOQ

MOVE SPACES TO MOMD-REPLYTOQMGR

MOVE MORO-NONE TG MQMD-REPORT

MOVE MOQFMT-STRING TO MQMD-FORMAT

MOVE MOMI-NONE TO MOMD-MSGID

MOVE MQCI-NONE TO MOMD-CORRELID

COMPUTE MQPMO-OPTIONS = MOPMO-NEW-MSG-ID + MQPMO-NO-SYNCPOINT

call "mMopuTl' USTNG MO-HCONN MOOD MOMD MOPMO
MQ-MSGOUT-LENGTH MQ-MSGOUT
MQ-COMPCODE ~ MQ-REASON

EVALUATE MQ-COMPCODE
WHEN MOCC-0K CONTINUE
WHEN MOCC-WARNING PERFORM 900-WARNING THROUGH 900-EXIT
WHEN OTHER PERFORM 910-ERROR THROUGH 910-EXIT
GO TD 240-SEND-MAINMAP-ERROR
END-EVALUATE

The procedural code to complete an MQPUT1 call, combination of and MQOPEN, MQPUT, and
MQCLOSE n a single call.

2 Themis

Now to the actual executable MQ call statements on this slide. Here we see the COBOL statements necessary
to populate the variables for an MQPUT1 call. The MQPUT1 call is a combination of an MQOPEN, MQPUT,
and MQCLOSE in a single call. Many times your CICS application will work with a single message within a task,
so this call saves you a bit of code, plus interacting with the MQ interface two times. This does mean less
overhead to the executing task. However, this savings disappears when you process more than one message
with an MQPUT1 call.

Since we are putting a message to a queue, the first three COBOL MOVEs populate the message area for our
simple message. It is a “request message”, passed to another CICS task to process and return a result.

The MOVEs to the MQOD- variables setup the queue name for the MQOPEN portion of the call.

The MOVEs to the MQMD- variables setup MQ options which describe the message and functions desired.
The MQMT-REQUEST identifies this as a “request message”, plus indicates the use of the MQ “ReplyToQ”
function. The MOVEs for MQMD-REPLYTOQ and MQMD-REPLYTOQMGR provide the values which will be
used by the other MQ application to respond with the “reply message”. The MQFMT-STRING informs MQ
that the data portion of the message is strictly character data and may participate in data conversion. The
setting of MQMI-NONE is important to ensure that each message obtains a unique message identifier. The
setting of MQCI-NONE means that the receiving application will not be retrieving specific messages.

The COMPUTE statement sets the MQPMO-NO-SYNCPOINT option, which means that the message is not put
within Unit-of-Work (UOW) control. If the CICS task were to abend, the message would not be rolled back.

Next is the actual MQPUT1 call itself. Itis a “static call” which means it will resolve to an actual module at
Linkage Edit time. You cannot use the COBOL DYNAM option with MQ applications since the name on the call
is not the actual module name. We will show how to code MQ dynamic calls at the end of this section. The
EVALUATE statement show a simple example of testing how the call completed.

MQ Usage in a COBOL Program
PROCEDURE DIVISION (cont.):

COMPUTE MQ-OPTIONS = MOQOO-INPUT-AS-Q-DEF + MQOO-FAIL-IF-QUIESCING +

MOQOO-BROWSE
MOVE MQ-OBJIECT-I TO MQOD-0BJECTNAME
MOVE SPACES TO MQOD-08 JECTOMGRNAME

CALL "MOOPEN' USING MQ-CONN MQOD MQ-OPTIONS MQ-HOBI-I
MQ-COMPCODE MQ-REASON

EVALUATE MQ-COMPCODE
WHEN MQCC-OK CONTINUE
WHEN MGCC-WARNING PERFORM SUC-WARNING THROUGH
WHEN OTHER PERFORM 910-ERROR THROUGH 910-EXIT
GO TO 240-SEND-MAINMAP-ERROR
END-EVALUATE

2 Themis

On this slide we show am example of the MQOPEN call to access a queue. The COMPUTE statement sets
options to specify the queue is input to the application, browsing of messages will be allowed, and the call is
to fail if the queue manager if being shutdown.

The two MOVE statements provide the queue name and clear the queue manager name. This is followed by
the actual MQOPEN call. The MQ-HOBJ-I is the returned handle which will be used on subsequent MQGET
calls to specify which queue is being utilized.

The EVALUATE statement will check how the call completed.

MQ Usage in a COBOL Program
PROCEDURE DIVISION (cont.):

MOVE MOMI-NONE TO MOMD-MSGID
MOVE MQCI-NONE TO MOMD-CORRELID

MOVE 20000 TO MOGMO-WAITINTERVAL
COMPUTE MQGYO-OPTIONS = MQGMO-WAIT + MQGMO-NO-SYNCPOINT
CALL "MOGET' USING MQ-CONN MQ-HOBJ-I MOMD MQGMO

MQ-MSGIN-LENGTH MQ-MSGIN MQ-DATA-LENGTH
MQ-COMPCODE MQ-REASON

EVALUATE MQ-COMPCODE
WHEN MGCC-OK
IF MOMD-MSGID EQUAL TO MOMI-NONE
MOVE ‘N’ TO INPUT-SWITCH
END-IF
CONTINUE
WHEN MOCC-WARNING PERFORM 000-WARNING THROUGH O00-EXIT
WHEN OTHER PERFORM 910-ERROR THROUGH 910-EXIT
G0 TO 240-SEND-MAINMAP-ERROR
END-EVALUATE

The procedural code to complete an MQGET call.

na pr

2 Themis

Here we see an example of an MQGET call. The first to MOVEs are necessary to ensure retrieval of the “next
message” from a queue. If the application were to exclude setting these variable before an MQGET, then ME
would take the value in them and look for a specific message. We will cover this condition at the end of this
section.

The MOOVE of 20000 to the variable MQGMO-WAITINTERVAL set the time to wait for a message to arrive in
the queue of 20 seconds. The COMPUTE statement sets the MQGMO-WAIT option to activate the “get with
wait” function, plus to get the message outside of UOW control. That means the message will not be rolled
back if the task abends. It also means that by default, the message when successfully retrieved will be
removed from the queue.

We then see the actual MQGET call.

Finally, we see the EVALUATE statement to check completion condition of the call. Please note the check for
MQMI-NONE, which is our method to check for existence of at least one message.

MQ Usage in a COBOL Program
PROCEDURE DIVISION (cont.):

COMPUTE MQ-OPTIONS = MQCO-NONE
CALL 'MQCLOSE' USING MQ-HCONN MQ-HOBJ-I MQ-OPTIONS
MQ-COMPCODE MQ-REASON

EVALUATE MQ-COMPCODE
WHEN MQCC-0OK CONTINUE
WHEN MOCC-WARNING PERFORM 900-WARNING THROUGH 900-EXIT
WHEN OTHER PERFORM 910-ERROR THROUGH 910-EXIT
GO TO 240-SEND-MAINMAP-ERROR

Eaa s gia
ENDG-EVALUATE

The procedural code to complete an MQCLOSE call.

2 Themis

On this slide we see an example of an MQCLOSE call. The setting of the MQ-OPTIONS is just to clear the
variable to indicate a normal MQCLOSE call. This is followed by the actual MQCLOSE call itself.

As with previous calls, the EVALUATE statement is used to check the status of the call.

MQ Usage in a COBOL Program
WORKING-STORAGE SECTION:

01 MQ-MODULES_CICS.

05 MQ-CLOSE PIC X(08) VALUE 'CSQCCLOS'.
05 MQ-CONN PIC X(08) VALUE 'CSOCCONN'.
05 MQ-CONNX PIC X(08) VALUE 'CSOQCCONX'.
05 MQ-DISC PIC X(08) VALUE 'CSQCDISC'.
05 MO-GET PIC X(08) VALUE 'CSOQCGET "
05 MQ-ING PIC X(08) VALUE 'CSQCING .
05 MQ-OPEN PIC X(08) VALUE 'CSQCOPEN'.
05 MQ-PUT PIC X(08) VALUE 'CSQCPUT '
05 MG-PUTL PIC X{08) VALUE 'CSGCPUTL'.
05 MQ-SET PIC X(08) VALUE 'CSQCSET '.

These module names represent the actual load library module names.
it maybe desirabie to code dynamic caiis as opposed to static caiis.

For example:

CALL MQ-PUT1 USING MOQ-HCONN MQOD MOQMD MQPMO
MQ-MSGOUT-LENGTH MQ-MSGOUT
MQ-COMPCODE MO-REASON

To accomplishan MQPUT1 call under CICS.

2 Themis

This slide contains the variables with the values for each of the actual module names that can be used to code
dynamic calls in the application. You will notice that the module names are different than the call module
names we have seen earlier. This is why you cannot use the COBOL DYNAM option when compiling a CICS
MQ application.

We use the MQPUT1 call to show an example of the minor change necessary to any MQ call to make it a
dynamic call.

MQ Usage in a COBOL Program
Applications must always use either MQMI_NONE or MQPMO_NEW_MSG_ID forMQPUT

MOPGMA

MQPUT without MQOMI_NONE Mi=MI01 MI=MI01 Mi=MIio1
or um_N‘E'n'_MSG_ID Msg 01 Msg 02 Msg 03

Applications must always use either MQMI_NONE or MQMO_NONE for MQGET

R
HEEETE IR IEZEEREEER I MOPGMB
l_mg}__l | Msg 02 I uig}_' MOGET without MOMI_NONE
{ —_— —— or MOMO NONE

“MQRC_NO_MSG_AVAILABLE"
reason code returned

As you can see, the proper setting of MGMD_MSGID by the application is important

MQMD_MSGID s a 24 byte attribute, when generated by QM it contains:
A 4 byte constant of ‘CSQ* on 2/OS or ‘AMQ * for distributed
First 12 bytes ofthe QM name
8 byte binary field containing an extracted value fromthe system clock

2 Themis ,

The MQMD_MSGID will always be a unique, generated value as long as the applications do their part. The
application is required to always set the attribute to MQMI_NONE or include the option
MQPMO_NEW_MSG_ID for every MQPUT or MQPUT1 call. If they do not provide this code then the Msgld
generated on the first call is reused for all subsequent calls. This is due to the fact that the generated Msgld
is passed back to the application by MQ in the MQMD-MSGID attribute. This is intended to provide the
application with a unique “tracking marker” for each message.

When retrieving messages the MQMD_MSGID attribute should be set to MQMI_NONE before the MQGET
call, or the MQGMO_MATCHOPTIONS attribute set with MQMO_NONE. If the application does not provide
this code then only the first message is retrieved and the second MQGET call issued will completely pass
through the rest of the messages in the queue and return an error. This is due to the fact that with the first
MQGET call the Msgld is populated with a valid value so when the second MQGET is issued the queue
manager acts like you are searching for a particular message which will not be found.

10

. NaYalry A'FT

A LOOKATTR

APPLICATION

A
P

r~e ran
CC FUR

ROGRAM

2 Themis

11

Trace for MQ Calls in the Application

00262 LBOOA AP 2520 ERM ENTRY COBOL=-APPLICATION-CALL -TO-TRUE (MGM) RET-2831E£398 05:51:15. 045963315 00, 0000327187 =001041=
00262 LEOOA RM 0301 RMLN ENTRY ADD_LINK CLTENT_NAME (RMI) REMOTE_ACCESS_ID_BUFFER(26739654 , 00000000 , 00000008) LINC_TD_BUFFER
(00099808 , 26AGGEEC , 00000008) RMC_TOKEN(26739600) LAST(ND) PRESUMPTION(ABCRT) PRELOGGING
(ND) SINGLE_UPDATER(ND) COCRDINATOR(ND) INITIATOR(ND) RECOVERY_STATUS(UNNECESSARY)
MO_RESYNC_OUTCOME(YES) RET-50097808 05:51:15, (460205625 00. 0000372500 =001042=
00262 LS0OA RM 0302 RMLN EXIT ADD_LINK/OK LINC_TOKEN(O10E0018) REMOTE_ACCESS_ID_BUFFER (26739654 , 00000000 , O0000008)
LINC_ID_BUFFER (00099608 , 26A666EC , 00D000008) LINK_ID()
RET-50097808 05:51:15. 0460432343 00, 0000226718 =001043=
00262 LS0OA AP 2522 ERM EVENT PASSING-CONTROL=TO<-REQUIRED=TRUE (MM]
RET-2831E£398 05:51:15. 0460585000 00, 0000152656 =001044=
00262 LBOOA SM OCO1 MG ENTRY GETMAIN GET_LENGTH(4D68) SUSPEND(YES) INITIAL_TMAGE(D0) STORAGE_CLASS({CICS)
RET-A9E7AD52 05:51:15, 0460748750 00, 0000163750 =001045=
00262 LBOOA SM 1201 SMAQ ENTRY ALLOCATE_PAGEPOOL_STORAGE SUBPOOL_TOKEN{2664A350) GET_LENGTH(4DEO0) SUSPEND(YES)
RET-26340€79 05:51:15. (460676406 00. 0000127656 =001046=
00262 LBOOA SM 1202 SMPQ EXIT ALLOCATE_PAGEPODL_STURAGE,/OK ALLOCATED_LENGTH(S000) ADDRESS(29044000) EXTENT_TOKEN(266DACO0Y

RESUME_SYSTEM_TASK (NO) RET-26340E79 05:51:15. 0460982187 00.0000105781 =001047=
00262 LBOOA SM 002 SMMG EXTT GETMAIN/OK ADDRESS_64(00000000_290A4008) RET-ASETADS2 05:51:15. 0467919843 00. 0006937656 =001048=
00262 LS00A AP A0S0 MQTRU ENTRY APPLICATION-REQUEST MQUFEM RET-2831E398 05:51:15.0465151093 00. 0000231250 =001049=
00262 LBOOA AP A0S5S4 MOTRU EVENT CSOCOPND ABOUT TO ISSUE MOOPEN QUELE (THEZOO. TRANSACT]

RET-2831E398 05:51:15. 0474675781 00, 0006524667 =001050=
00262 LBOOA AP ALTE MQTRU EVENT ABOUT_TO_TSSUE_MQ_IDENTIFY_TOLOQMOR (MOAA) RET-2831E358 05:51:15.0474853281 00. 0000177500 =001051=
00262 LBOOA AP AL77 MQTRU EVENT RETURN_FROM_MQ_IDENTIFY RET-2831E398 05:51:15. 1031758437 00, 0556905156"=001052=
00262 LBO0A AP A095 MQTRU EVENT CSOCOPNH RETURN FROM MODPEN RET-2831E338 05:51:15. 1070199062 00.0038440625 =001053=

00262 LBODA AP AD91 MQTRU EXIT APPLICATION-REQUEST MQOPEN - MOEC

) MOPC
RET-2831E398 05:51:15.1103231093 00.0000188281 =001070=
00262 LBOOA AP 2523 ERM EVENT REGAINING-CONTROL-FROM-REQUIRED-TRUE (MGM

)
RET-2831E398 05:51:15. 1108483750 00, 0000252656 =00107,

00262 LBOOA AP 2521 ERM EXIT COBOL=-APPLICATION=CALL=TO=TRUE (MM) RET=2831E398 05:51:15. 11083691875 00. 0000208125 =001072
‘\
\[_ Timen 1103691875 11103483750 Timein |/
i m;'gce 0459833125 0474675781 MQ region
0643858750 .0628807969

CALL 'MQOPEN' being issued

2 Themis ;.

This slide contains the portion of trace entries representing the MQOPEN call to access the specified queue.
The bracketed entries on the left represent the total time spent in the CICS MQ interface. Most of this time
(processor time) will actually be captured and reported on the MQ region side. This is because control is
transferred from the MQ interface to MQ as a secondary address space very quickly. We have always
classified the time spent between “ERM ENTRY” and “ERM EXIT” as time when the application has turned
control over to the queue manager and entered a wait state.

The bracketed entries on the right represent the total time spent in the queue manager region itself. The

“MQTRU ENTRY” trace entry occurs just before giving control to MQ. The “MQTRU EXIT” occurs just after
MQ gives control back to the CICS MQ interface. This time is considered to be solely done on behalf of the

queue manager region and the CICS application is in a wait state for its completion.

While the times shown on the slide might seem to be relatively low, on our small little mainframe we have
executed around 1 million instructions to complete this MQOPEN call.

12

Trace for MQ Calls in the Application

262 LSOOA AP 2520 ERM ENTRY COBDL-APPLICATION-CALL =TO-TRUE (MQM] RET-2831E480 05:51:15. 1130470625 00. 0000345468 =001081=
00262 LBOOA AP 2532 ERM EVENT PASSING-CONTROL-TO-REQUIRED-TRUE (MM 1]

RET-2831E480 05:51:15, 1130694218 00, 0000223593 =001082=
00262 LS00A AP AOS0 MOTRU ENTRY APPLICATION-REQUEST MQGET RET-2531E480 05:51:15, 1130860000 00, 0000165781 =00108?
00262 LBOOA AP ACST MQTRU EVENT CSQCQMGH ABOUT TO ISSUE MOQGET RET-2831E4B0 05:51:15.11361015875 00, 00052415875 =001084=

00262 LS00A AP AO9S MITRU EVENT CSOCGMGI & CSQUGMGD - MESSAGE ID AND DATA RET-2831E480 05:51:15.1154803437 00.0018701562 =001085=
00262 LB00A AP AOI1 MQTRU EXIT APPLICATION-REQUEST MQGET — MOXKK (0ODO000D0) MORC (00000000)
RET-2831E480 05:51:15. 1154528261 00, 0000124843 =001086=
00262 LBOOA AP 2523 ERM EVENT REGAINING-CONTROL=FROM-REQUIRED-TRUE (MOM)
RET-2831£480 05:51:15. 1155151008 00. 0000222812 =001082
00262 LBOOA RM 0301 RMLN ENTRY SET_LINK LINK_TOKEN(OLOEOO1B) LINK_ID_BUFFER(2673965C , 2GAGGGEC , 0O00D0D00B) SINGLE_UPDATER(YES)
RECOVERY_STATUS(NECESSARY) RET-S0097C36 05:51:15. 1155292031 00, 0000140937 =0010554
00262 LBOOA RM 0302 RMLN EXIT SET_LINK/OK LINC_ID_BUFFER(267396EC , 26AGGEEC , O0000008) LINK_ID()
RET-80097C36 05:51:15. 1160660056 00.0005 365125 =00108
262 LBOOA AP 2521 ERM EXIT COBOL=-APPLICATION-CALL=TO=TRUE (MM) RET-2831E4B0 05:51:15. 11ER775625 00,0005 115468 =001090=

\
\ T—— 1165775625 11551510893 /
Ma .1130470625 .1130860000 Time in
interface 10035305000 0024291093 MQ region

CALL ‘MQGET' beingissued

2 Themis

This slide contains the portion of trace entries representing the MQGET call to retrieve the reply message
from the queue. The bracketed entries on the left represent the total time spent in the CICS MQ interface.
Most of this time (processor time) will actually be captured and reported on the queue manager region side.
This is because control is transferred from the MQ interface to the queue manager as a secondary address
space very quickly. We have always classified the time spent between “ERM ENTRY” and “ERM EXIT” as time
when the application has turned control over to the queue manager and entered a wait state.

The bracketed entries on the right represent the total time spent in the queue manager itself. The “MQTRU
ENTRY” trace entry occurs just before giving control to MQ. The “MQTRU EXIT” occurs just after DB2 give
control back to the CICS MQ interface. This time is considered to be solely done on behalf of the queue
manager and the CICS application is in a wait state for its completion.

While the times shown on the slide might seem to be relatively low, on our small little mainframe we have
executed around 250,000 instructions to complete this MQGET call.

13

Trace for MQ Calls in the Application

262 LSOOA AP 2520 ERM ENTRY COBDL-APPLICATION-CALL =TO-TRUE (MQM 1] RET-2831E5CS 05:51:15. 1250901406 00, 0000439657 =001111=
00262 LEOOA AP 2522 ERM EVENT PASSING-CONTROL-TO-REQUIRED-TRUE (MM]

RET-2831E5CH 05:51:15, 1251207031 00, 0000305625 =001112=
00262 LS00A AP AD90 MJTRU ENTRY APPLICATION-REQUEST MOQFUTL RET-2831E5CS OS:51:15. 00, 0000218437 =00111%"
00262 LBOOA AP AD98 MQTRU EVENT CSQCPION & CSQCPIMD - ABOUT TO ISSUE MOPUT1 QUEVE(THMEZOO.RESWTS)

RET-2831E5CS 05:51:15. 1259146406 00, 0007720937 =001114=
00262 LBODA AP A0 MQTRU EVENT CSCCPIMI MESSAGE ID RET-Z831E5CS 05:51:15. 1300504218 00. 0041357812 =001115=
00262 LS0OOA AP ADI1 MOTRU EXIT APPLICATION-REQUEST MQPUTL - MOEC(00000000)

RET=-2831E5CH 05:51:15. 1300673750 00, 0000169631 =001116=
00262 LBOOA AP 2523 ERM EVENT REGAINING-CONTROL-FROM-REQUIRED-TRUE (MM)
RET-2831E5CS 05:51:15. 130099662 00. 0000322812 =001117=
1262 LSOOA AP 2521 ERM EXIT COBOL-APPLICATION-CALL-TO-TRUE (MOM) RET-2831E5C8 05I51:15. 1301260655 00. 0000264062 =001115=,

\ — 1301260625 1300996562
Ma 1250001406 1251425468 Time in
interface 0050355469 0049571094 MQ region

CALL ‘"MQPUT1 beingissued

£ Themis .

This slide contains the portion of trace entries representing the MQPUT1 call to put the request message to a
queue. The bracketed entries on the left represent the total time spent in the CICS MQ interface. Most of
this time (processor time) will actually be captured and reported on the queue manager side. This is because
control is transferred from the MQ interface to the queue manager as a secondary address space very
quickly. We have always classified the time spent between “ERM ENTRY” and “ERM EXIT” as time when the
application has turned control over to the queue manager and entered a wait state.

The bracketed entries on the right represent the total time spent in the queue manager itself. The “MQTRU
ENTRY” trace entry occurs just before giving control to the queue manager. The “MQTRU EXIT” occurs just
after the QM gives control back to the CICS MQ interface. This time is considered to be solely done on behalf
of the QM and the CICS application is in a wait state for its completion.

While the times shown on the slide might seem to be relatively low, on our small little mainframe we have
executed around 500,000 instructions to complete MQPUT1 call.

14

Trace for MQ Calls in the Application

262 LBOOA AP 2520 ERM ENTRY COBOL=-APPLICATION-CALL =TO-TRUE (MQM 1] RET-2831E4B0 05:51:15. 133507 750 00, 0000421718 =001127=
00262 LEOOA AP 2522 ERM EVENT PASSING-CONTROL-TO-REQUIRED-TRUE (MM]

RET-2831E480 05:51:15,1335353906 00, 0000275156 =001128=
00262 LE00A AP AC30 MOTRU ENTRY APPLICATION-REQUEST MOGET RET-2831E4B0 05:51:15, 1335550468 00, 0000196562 =00112"
00262 LEO0A AP ADST MQTRU EVENT CSQCGMGH ABOUT TO ISSUE MOGET RET-2831E480 05:51:15.1342130937 00, 0006550468 =001130=
00262 LEOOA AP AOBS MOTRU *EXC* CSODCCRC MOEC{0DODODCR) MORC (OODOO7F 1) RET-2831E4B0 05:51:15.1352546250 00, 0010415312 =001131=
00262 LBOOA AP AOI1 MOTRU EXIT APPLICATION-REQUEST MQGET - MOCC (00000002) MORC(000007FL)

RET-2531E4B0 05:51:15.1361856250 00. 0009310000 =001132=
00262 LBOOA AP 2523 ERM EVENT REGAINING-CONTROL=FROM-REQUIRED-TRLUE (MM)

RET-2831E450 05:51:15. 1362310312 00, 000045 4062 =001133=
Q0262 LBOOA AP 2521 ERM EXIT COBOL-APPLICATION-CALL -TO-TRUE (MCM) RET-2831E4B0 05:51:15.136&S8E2&1 00. 000027 7968 =001134=

\ 1362588281 11362310312

Time in 1335078750 1335550468
MQ 10027509531 0026759855 amen
interface vhe MQ region

CALL ‘'MQGET’ beingissued

2 Themis ,

This slide contains the portion of trace entries representing the MQGET call to retrieve a message from the
queue. The bracketed entries on the left represent the total time spent in the CICS MQ interface. Most of
this time (processor time) will actually be captured and reported on the queue manager side. This is because
control is transferred from the MQ interface to queue manager as a secondary address space very quickly.
We have always classified the time spent between “ERM ENTRY” and “ERM EXIT” as time when the
application has turned control over to the queue manager and entered a wait state.

The bracketed entries on the right represent the total time spent in the queue manager itself. The “MQTRU
ENTRY” trace entry occurs just before giving control to the queue manager. The “MQTRU EXIT” occurs just
after the QM gives control back to the CICS MQ interface. This time is considered to be solely done on behalf
of the QM and the CICS application is in a wait state for its completion.

While the times shown on the slide might seem to be relatively low, on our small little mainframe we have
executed around 250,000 instructions to complete this MQGET call.

15

Trace for MQ Calls in the Application

262 LSOOA AP 2520 ERM ENTRY COBDL-APPLICATION-CALL =TO-TRUE (MQM] RET-2831E424 05:51:19. IPSASIMGET 00. 0000552812 =001141=
00262 LBOOA AP 2532 ERM EVENT PASSING-CONTROL-TO-REQUIRED-TRUE (MM 1]

RET-2831E424 05:51:19. 3258888437 00, 0000353750 =001142=

00262 LS00A AP A0S0 MQTRU ENTRY APPLICATION-REQUEST MOQCLOSE RET-2531E424 05:51:19, I2ST4LEREL 00, 0000529843 =001147=

00262 LSOOA AP A096 MQTRU EVENT CSQCLOSH ABOUT TO ISSUE MOCLOSE RET-2831E424 05:51:19.3266977343 00, 0007559062 =001144=

00262 LBOOA AP AOI1 MOTRU EXIT APPLICATION-REQUEST MOCLOSE - MOCC (00000000) MORC(O0000000)
RET-2531E424 05:51:19. 3317763306 00. 0015242031 =001161=
00262 LBODA AP 2523 ERM EVENT REGAINING-CONTROL=FROM-R EQUIRED=TRUE (MM)

RET-2831E424 05:51:19. JJABIIINX 00, 0000529218 =001163=
Q0262 LBOOA AP 2521 ERM EXIT COBOL-APPLICATION-CALL -TO-TRUE (MCM) RET-2831E424 05:51:19. 3318018 00. 0000316093 =001163=
\ 3318609218 3318293125
Time in 3258534687 3250418281 e
Ma 0060074531 0058874344 reae
interface MQ region

CALL ‘'MQCLOSE' beingissued

2 Themis

This slide contains the portion of trace entries representing the SQL SELECT statement to find the average
and maximum SALARY. The bracketed entries on the left represent the total time spent in the CICS DB2
interface. Most of this time (processor time) will actually be captured and reported on the DB2 region side.
This is because control is transferred from the DB2 interface to DB2 as a secondary address space very
quickly. We have always classified the time spent between “ERM ENTRY” and “ERM EXIT” as time when the
application has turned control over to DB2 and entered a wait state.

The bracketed entries on the right represent the total time spent in the DB2 region itself. The “MQTRU
ENTRY” trace entry occurs just before giving control to the queue manager. The “MQTRU EXIT” occurs just
after DB2 give control back to the CICS MQ interface. This time is considered to be solely done on behalf of
the queue manager and the CICS application is in a wait state for its completion.

While the times shown on the slide might seem to be relatively low, on our small little mainframe we have
executed around 500,000 instructions to complete this MQCLOSE call.

16

Trace for MQ Calls in the Application

00262 LBODA AP OCEL EIF ENTRY RETURN REJ(0004) FIELD-A(ZAMOMED . .\) FIELD-B(0S000EOS)
EOUNDARY (0200) RET- o5:51:18, 00, OOO0ZS 1875 =001172=
00262 LBODA AP E160 EXEC ENTRY RETURN COBOLII STMT_#(00375) RET-BO085F4E 05:51:19, 3347014062 00, 0000304375 =001173=
QZGE LEO00A RM FALL RMUD ENTRY COMMIT_UOW CONTINUE(ND) RET-AG35CE38 05:51:19, 3383370761 00, 0000130468 =001158=
262 LBOOA AP 2500 ERMSP ENTRY SEND_DO_COMMIT RMC_TOKEN(Z26739600) CONTINUE(ND) SINGLE_UPDATER(YES) LINK_TOKEN(O10E001B) TRUE (MOM

)] RET-AG3D02DE 05:51:19. IS 17LE 00, 0000061575 =001193=
00262 LBOOA AP 2509 ERMSP EVENT INVOKE_RMI TRUE(MOM) FOR ONLY UPDATER (UERTONLY) REQUEST
RET-AG3DOZDE 05:51:19, 3385262656 00. DO0D0E5468 =001200
00262 LBOOA AP 2520 ERM ENTRY SYNCPOINT-MANAGER=-CALL-TO=-TRLUE (MCM] RET-274B98F8 05:51:19.339%4118906 00. 0008856250 =00120 e

00262 LB0OA AP 2522 ERM EVENT PASSING-CONTROL-TO-REQUIRED-TRUE (MM)

RET-274B98F8 05:51:19, 3394599531 00, 0000480625 =001202=
00262 LSOOA AP AOCS0 MOTRU ENTRY SYNCPOINT-MANAGER REQUEST RET-274896F8 05:51:19, 3394971562 00. 0000372031 =001203=
00262 LEOOA AP ADAA MOTRU EVENT CSOCMORT ABOUT TO ISSUE SINGLE PHASE COMMIT AND END THREAD

RET-274896F8 05:51:19. 3402617812 00. 0007646250 =001204=
00262 LBOOA AP AD91 MOTRU EXIT SYNCPOINT-MANAGER REQUEST RET-2T4B98F8 05:51:19. 3435634843 00.0033017031 =001206=
00262 LBODA AP 2523 ERM EVENT REGAINING-CONTROL-FROM-REQUIRED-TRUE (MQM]

RET-2T4B58F8 05:51:15. 3436066250 00. 0000421406 =001206=
00262 LBOOA AP 2521 ERM EXIT SYNCPOINT-MANAGER-CALL-TO-TRUE (MM J RET-274898F8 05:51:19. 3436257500 00.0000201250 =001207=
00262 LBOOA AP 2510 ERMSP EVENT RETURN FROM RMI TRUE (MM) WITH OK (LUERFOK) RESPONSE

RET-AG3D0Z0E 05:51:19. 3436367500 00. 0000110000 =001208=_|
00262 LBOODA AP 2501 ERMSP EXIT SEND_DO_COMMIT/OK ACCESSIBLE(YES) VOTE(YES) TRUE(MQM

RET-AGIDOZDE 05:51:19. 3436439062 00. 0000071562 =0012

C
00262 LBOOA AP 2500 ERMSP ENTRY PERFORM_COMMIT RMC_TOKEN(26739600) CONTIMUE(ND) SINGLE_UFDATER(YES) COCRDINATOR(YES) INITIATOR (WOt
RESTART(ND) UDW_STATUS(FORWARD) LINK_TOKEN(OL10E0O1B) PRESUMPTION(ABORT) RECOVERY_STATUS

(NECESSARY) TRUE(MOM b RET-AG3D1F86 05:51:19. 4T IDGE 00. 0000053750 =001217=

00262 LBODA AP 2501 ERMSP EXIT PERFORM_COMMIT,/OK ACCESSIBLE(YES) FORGET(YES) PASS(YES) ABEND(ND) NEXT_RECOVERY_STATUS(UNNECESSARY)
TRUE (MM b RET-AG3D1F 6 05:51:19. 34I7IESAEE 00. 0000045906 =0012 15
D
00262 LBOODA AP 2520 ERM ENTRY CALL-TRUES-FOR-TASK=-END RET-27 489728 05:51:19. 3446409687 00. 0000430468 -mlesc

00262 LBOOA AF 2532 ERM EVENT PASSING-CONTROL=TO-REQUTRED=TR UE (MM]

RET-274B89728 05:51:19, 3453638125 00, 0007428437 =001224=
00262 LBODA AP AD90 MOQTRU ENTRY TASK-MANAGER REQUEST RET=27 489728 05:51:19, 3454362157 00. 0000524062 =001225=
00262 LBOOA AP ADIL MOTRU EXIT TASK-MANAGER REQUEST RET-274B9728 05:51:19. 3455018125 00, 0000655337 =001226=
00262 LBOODA AP 2523 ERM EVENT REGAINING-CONTROL-FROM-REQUIRED-TRUE (MM]

RET-ZT4B9728 05:51:19. 3455317167 00, 0000293062 =001227=
00262 LBODA AP 2521 ERM EXIT CALL-TRUES-F(R-TASK=-END RET=-274B9728 05:51:19. 3455626093 00. 0000308906 =00122§=

00262 LB0OA RM FAL2 RMUO EXIT COMMIT_UOW/OK FAILED _LINK(OO0000LE) RET-AS35CE98 05:51:19,.3464612812 00.0000600937 =001236=

EXECCICSRETURN issued

£ Themis

One last time through the CICS MQ interface as part of the EXEC CICS RETURN command being executed.
CICS is the coordinator for committing modified data during execution of the application within the CICS
region. There is a lot of activity going on during this process of ending and cleanup of the application. We
have carved out the activity associated with the CICS MQ interface only.

The trace entries represented by connector A, represent the total time within the CICS MQ interface itself.
The entries represented by the connector B, show the time the interface communicated with Resource
Recovery Services (RRS) address space on z/0S. The entries represented by connector C, is the actual time
spent in the queue manager itself for “prepare to commit”. The entries represented by connector D, is the
actual time spent in the queue manager to perform its portion of the commit.

17

2 Themis

18

CEDF Screens for MQ Calls

INVENTORY UPDATE VIA WMQ
ENTER USER ID =-- THMZOO REQUEST -- R ITEM -- 10 qQTmy -- 10

ITEMNO DESCRIPTION PRICE QONHAND QSHIP QBACORD

HIT CLEAR / F3 WHEN COMPLETE

CALL = MOCC = MORC =

Application screen for request entry

2 Themis

On this slide we can see the application map which allows for entry of the information that will produce the
request message. This is a simple inventory update application where two CICS transaction, two queues and
one VSAM file are involved. It is as close to a real production application we can get during a class workshop.

CEDF Screens for MQ Calls

TRANSACTION: THZR PROGRAM: THMZOOR TASK: 0000353 APPLID: TCICSA3 DISPLAY: 00
STATUS: ABOUT TO EXECUTE COMMAND
CALL TO RESOURCE MANAGER MOM

001: ARG 000 ('.......ounnann. &)
001: ARG 001 (C'oD THMZ')
001: ARG 002 ('MD ")
001: ARG 003 (C'PMO00n. ")
001: ARG 004 ('...& ..&.")
001: ARG 005 ('10000110000010)
001: ARG 006 ("....ovinnnnn. 10")
001: ARG 007 (".......... 100001°)

ENTER: CONTINUE

PFl : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : UNDEFINED

PE4 : SUPPRESS DISPLAYS PFS : WORKING STORAGE PFE : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF1l: EIB DISPLAY PF12: ABEND USER TASK

MQPUT1 call being issued

2 Themis

On this slide we see the MQPUT1 call about to execute. As you can see, there is no clear indication that it is
an MQPUT1. We can determine it is the MQPUT1 because ARG 001 is the MQOD, ARG 002 is the MQMD,
and ARGO003 is the MQPMO. Please remember, ARGO0O through ARG 007 represent the “call parameters” in
the order which they are specified on the MQPUT1 call. Also, IBM does not show the complete data area
represented by each argument, only the first 16 bytes.

CEDF Screens for MQ Calls

TRANSACTION: THZR PROGRAM: THMZOOR TASK: 0000353 APPLID: TCICSA3 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE
CALL TO RESOURCE MANAGER MOM

001: ARG 000 ('.......ounnann. &)
001: ARG 001 (C'oD THMZ')
001: ARG 002 ('MD ")
001: ARG 003 (C'PMO00n. ")
001: ARG 004 ('...& ..&.")
001: ARG 005 ('10000110000010)
001: ARG 006 ("....ovinnnnn. 10")
001: ARG 007 (".......... 100001°)

ENTER: CONTINUE

PFl : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PE4 : SUPPRESS DISPLAYS PFS : WORKING STORAGE PFE : USER DISPLAY

PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF1l: EIB DISPLAY PF12: ABEND USER TASK

MQPUT1 call complete

2 Themis .,

On this slide we can see the completion of the MQPUT1 call. Again, this determined by the MQOD, MQMD,
and MQPMO being supplied. Also, IBM shows the first 16 bytes of each data area. However, ARG 006 is the
completion code and ARG 007 the reason code. Both of these are binary full words. So to determine their
value you have to hit the F2 key to switch to Hex. You will then be able to see the MQ returned completion
and reason codes.

CEDF Screens for MQ Calls

TRANSACTION: THZR PROGRAM: THMZOOR TASK: 0000353 APPLID: TCICSA3 DISPLAY: 00
STATUS: ABOUT TO EXECUTE COMMAND

CALL TO RESOURCE MANAGER MOM

001: ARG 000 ('............... &)

001: ARG 001 ('oDTHMZ")

001: ARG 002 ("....... & ..& ..&")

001: ARG 003 ("......vuuns & ..&")

001: ARG 004 ('.............. 10°)

001: ARG 005 ('.......... 100001")

GFFSET: X'005686 L INE : UNKNOWN EIBFN=X"1802
ENTER: CONTINUE
PFl : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : UNDEFINED
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PFE : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF1l: EIB DISPLAY PF12: ABEND USER TASK

MQOPEN call being issued

2 Themis

On this slide we can see the MQOPEN call about to be executed. The only indication of this is that ARG001 is
the MQOD. The ARG 000 through ARG 005 represent the MQOPEN call parameters in the sequence which
they were coded.

CEDF Screens for MQ Calls

TRANSACTION: THZR PROGRAM: THMZOOR TASK: 0000353 APPLID: TCICSA3 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE

CALL TO RESOURCE MANAGER MOM

001: ARG 000 ('............... &)

001: ARG 001 ('oDTHMZ")

001: ARG 002 ("....... & ..& ..&")

001: ARG 003 ("......vuuns & ..&")

001: ARG 004 ('.............. 10°)

001: ARG 005 ('.......... 100001")

GFFSET: X'005686 L INE : UNKNOWN EIBFN=X"1802
ENTER: CONTINUE
PFl : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PFE : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF1l: EIB DISPLAY PF12: ABEND USER TASK

MQOPEN call complete

2 Themis

On this slide we can see the completion of the MQOPEN call. Once again, ARG 004 is the completion code
and ARG 005 the reason code. To view them you have to hit F2 to switch to Hex. Both are full word binaries,
so only look at the first 4 bytes of ARG 004 and ARG 005.

CEDF Screens for MQ Calls

TRANSACTION: THZR PROGRAM: THMZOOR TASK: 0000353 APPLID: TCICSA3 DISPLAY: 00
STATUS: ABOUT TO EXECUTE COMMAND
CALL TO RESOURCE MANAGER MOM

001: ARG 000 ('......oiunnann. &)
001: ARG 001 ('........... &...&")
001: ARG 002 ('MD ")
001: ARG 003 ("GQMO0Ws +.")
001: ARG 004 ('...&. .. & .. & ...")
001: ARG 005 ('000010PLAIN 100w')
001: ARG 006 ('...)
001: ARG 007 ('.vvvvvnnnnnn. 0°)
001: ARG D08 (".......... 1000017)

pppppp C e OWAE T O f ¢ TR s e t1 oA
UFFSETIA Uuai JE L INE o UNRINDW, EIDFiN=A Louc

ENTER: CONTINUE

PFl : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : UNDEFINED

PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PFE : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11l: EIB DISPLAY PF12: ABEND USER TASK

MQGET with WAIT call being issued

£ Themis ..

On this slide we can see the MQGET call about to execute. We determined this by the fact that ARG 002 is
the MQMD and ARG 003 is the MQGMO.

CEDF Screens for MQ Calls

TRANSACTION: THZR PROGRAM: THMZOOR TASK: 0000353 APPLID: TCICSA3 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE
CALL TO RESOURCE MANAGER MOM

001: ARG 000 ('.......conunn.. &)
001: ARG 001 ('........... &...&")
001: ARG 002 ('MD ")
001: ARG 003 ('GQMO+."

)
001: ARG 004 ('...&. .. & .. & ...")
001: ARG 005 ('000011CLOSE THE ')
001: ARG 006 ('...&)
001: ARG 007 ('.vvvvvnnnnnn.)
001: ARG 008 (b

pppppp T
OFFSET X UUa/

ENTER: CONTINUE

PFl : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PFE : USER DISPLAY

PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF1l: EIB DISPLAY PF12: ABEND USER TASK

MQGET with WAIT call complete

2 Themis ..

On this slide we can see the completion of the MQGET call. The completion code is ARG 007 and the reason
code ARG 008. To see their values you have to switch to Hex mode.

CEDF Screens for MQ Calls

TRANSACTION: THZR PROGRAM: THMZOOR TASK: 0000353 APPLID: TCICSA3 DISPLAY: 00
STATUS: ABOUT TO EXECUTE COMMAND

CALL TO RESOURCE MANAGER MOM

001: ARG 000 ('............... &)

001: ARG 001 ('........... & ..&")

001: ARG 002 ("....... & ..& ..&")

001: ARG 003 ("..vvvnvnnnnnnn 107)

001: ARG 004 (".......... 100001")

GFFSET:X'005712" L INE : UNKNOWN EIBFN=X'1802"
ENTER: CONTINUE
PFl : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : UNDEFINED
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PFE : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF1l: EIB DISPLAY PF12: ABEND USER TASK

MQCLOSE call being issued

2 Themis .

On this slide we can see the MQCLOSE call about to execute. We can only determine this by the lack of any
MQ structure being present in the arguments.

CEDF Screens for MQ Calls

TRANSACTION: THZR PROGRAM: THMZOOR TASK: 0000353 APPLID: TCICSA3 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE

CALL TO RESOURCE MANAGER MOM

001: ARG 000 ('............... &)

001: ARG 001 ('........... & ..&")

001: ARG 002 ("....... & ..& ..&")

001: ARG 003 ("..vvvnvnnnnnnn 107)

001: ARG 004 (".......... 100001")

GFFSET:X'005712" L INE : UNKNOWN EIBFN=X'1802"
ENTER: CONTINUE
PFl : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PFE : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF1l: EIB DISPLAY PF12: ABEND USER TASK

MQCLOSE call complete

2 Themis

On this slide we can see the completion of the MQCLOSE call. The first full words of ARGO03 and ARG 004 are
the completion code and reason code, respectively.

CEDF Screens for MQ Calls

INVENTORY UPDATE VIA WMQ

ENTER USER ID =-- THMZOO REQUEST -- R ITEM -- 10 qQTmy -- 10
ITEMNO DESCRIPTION PRICE QONHAND QSHIP QBACORD
000010 PLAIN 100w LIGHT BULB .99 0500040 0000000 0000000

HIT CLEAR / F3 WHEN COMPLETE

CALL = MOCLOSEI MOCC = MORC =

Application screenwith returned information

2 Themis

Finally we see the application map being populated with the returned values from the replay message.

Our little application took the values entered on the top of the screen and constructed a “Request message”.
It then issued an MQPUT1 call to put the message to the “transaction queue”, which cause MQ to trigger the
QTO0O0 transaction to execute as a background task. The QTOO0 application then retrieved the messages from
the queue and updated the inventory VSAM file. It then issued an MQPUT1 to put the “Reply message” to
the “results queue”. This caused the RTOO transaction (the one working with the map) to wake-up from its
MQGET with wait, populate the screen and send the map back to the user.

28

2 Themis

29

CICS MQ Interface Statistics

Applid TCICSA3 Sysid TCAZ Jobname TCICSAZ Date 03/18/2018 Time 08:46:10 CICS 7.0.0 PAGE A3
w re MO i i 100

MOCONN MBME. + « & & o o « » o & & o « +» | MOAA

webSphere MQ Comnection Status ! CONNECTED websphere MQ connect date / Time: 03/18/2018 08:25:13.46780
MOMEME . & & v = & « » s = s + « = = = » 5 MOAA

webSphere W] Queue mamoer Name. . . T MOAA

Resyncnamber . . - : YES

Wensphere WQ Release : 8.00

Initiation Queue Name,
Number of current tacks
Number of futile attempts

¢ TCICSAS.INIT
1
]

Toral number of APT calls. . . . e e et 43 API Crossing Exit mame. CSOCAPX

Number of APT calls completed Uk e e .t 41 API Crossing Exit Concurrency Status. . . . @ Threadsafe
Number of OPEN requests. : 11
Number of CLOSE requests @ 8
Number of GET requests . e e e 13
Number of GETWAIT requests 11
Number of GETWAITs that waited : 11
Number of PUT requests . . . I | o
Number of PUTL requests.« . I 11
Number of INQ requests @ o
Number of SET requests I o
Number of internal Mg calls. . . . P 72
Number that completed syrcr-romus\y S 56
Number that needed I/0 . . PR | o
Number of calls with TCB switeh. o

Statistics from CICS interval statistics

2 Themis

This slide contains the first portion of statistics for the CICS MQ Interface. The top portion (through “futile
attempts”) contains basic information about the interface including the name of the queue manager, its MQ
release, name of the initiation queue, plus the connection status and when the connection was established.
We also see the current number of tasks using MQ and the number of calls issued while the connection was
not active (futile attempts).

The next portion contains the total number of API calls issued, the number which have completed
successfully, plus the name of the API crossing exit.

The next portion contains the number of API calls by each type, from OPEN (MQOPEN) to SET (MQSET)
requests.

The lower portion provides the number of internal MQ calls issued, number completed successfully, number
of I/Os required, and the number of times a TCB switch was necessary.

30

CICS MQ Interface Statistics

Number of indoubt umits of work. ! o
Number of urresolved units of work . : o
Number of resolved committed WOWs. . . . & o
Number Of resolved DACKOUT UDWS. § o

Number Of BAckOUT UOWS « « o + o o o s 4 o
Number of Comeitted UOWs H
Number of tasks. . oo
Number of Single Phase Coemi
Number of Two Phase Commits
Number of CB requests . . 1
Number of msgs consumed0 o
Number of CTL requests: o
Number of SUB requests !
Number of SUBRQ request] o
Number Of STAT reques : o
Number of CRTMH r B
Number of DLTMH r
NumDer of SETMP r
Number of INGMP r
Number of DLTMP r
Number of MHBUF r
Number of BUFMH requests.

Statistics from CICS interval statistics (cont.)

2 Themis

This slide show the rest of the MQ interface statistics. The first 4 lines are statistics related to recovery
processing as required during MQ interface start up. Unless the CICS region was not terminated abnormally,
there should be no values in these 4 lines.

The next 2 lines show the number of tasks which were Backed out or Committed. This is assuming that not
task issued a EXEC CICS SYNCPOINT or SYNCPOINT ROLLBACK command. We then see the Number of tasks
perform along with the number of single or 2 phase commits performed.

The last 13 line provide statistics about the number of each of the unusual MQ calls issued. These calls
represent new features added in MQ Version 7 and are not widely used.

31

2 Themis

32

Overview of IBM MQ Interface

CICS MQ Interface

CICS Region IBM MQ Region
Application CHAM .
o transaction
e
Il / 7cB || TRUE ueuen
CICS API / —
it —
rail \ | e—
TcB || TRUE .|
Entry Threads —

The IBM MQ interface provides “multi-threaded” accessto the connected MQ region

MQ will acceptrequests and processthem against the specified queue

This slide provides a simple view of how CICS will interface to resource managers like IBM MQ or DB2. The
key to working with other resource managers is the Task Related User Exit or TRUE programs. These are
provided by CICS to provide the cross region communication with the resource manager in the other address
space.

The CICS application will execute the command to access one of the defined resource managers. These
commands are the normal API functions expected by that resource manager, which include:

CALL ‘MQxxxx’ — for WebSphere MQ requests

EXEC SQL — for DB2 requests

EXEC DLI — for IMS requests

CICS maintains a pool of Task Control Blocks or TCBs to process these requests on, thus freeing up the normal
CICS TCBs to perform other work. There is an Sl parameter, MAXOPENTCBS, which specified the number of
TCBs CICS could use. All of the work performed on these TCBs is “threadsafe” to minimize TCB switching and
improve performance.

The CKAM transaction is the “alert monitor” transaction for the MQ adapter. The transaction handles
unscheduled events which are produced by the queue manager. This includes such events like the queue
manager being shutdown or waiting for the queue manager to start up.

The CKTI transaction is the CICS trigger monitor. The trigger monitors in MQ perform MQGET with wait on a
define initiation queue (INITQ) associated with the application. In our case for the CICS region that CKTl is
running in. When a trigger event occurs, the queue manager puts a message into the INITQ. This will wake
up CKTI, which then analyzes the message contents (it is known as a trigger message) and will start the
application it indicates.

33

MQ Resource Definitions
Define MQCONN:

DEFINE MQCONN (MQAR) GROUP(THEMISO0)
DESCRIPTION (SPECIAL TEST CONNECTION)
INITONAME (TCICSA3.INITQ) MONAME (MQAR)

INITQNAME(TCICSA3.INITQ) - specifies the name ofthe “initiation queue”to be used by the CICSMQ
trigger monitor

MQNAME(MQAA) specifiesthe name ofthe queue manager to which CICS should establish the
connec tion

The MQ interface will utilize the OPENAPI interface and dynamically create and allocate thread TCBs up
to the MAXOPENTCBS limit

Two permanent CICS transactions will be started when the connectionis made:
CKTI-the CICS MQ trigger monitor
CKAM —=the MQ alert monitor

2 Themis

This slide shows the only resource definition associated with the CICS MQ interface. It serves to define the
connection to the desired queue manager. CICS can only be connected to one queue manager at a time. To
connect to a different queue manager you would have to stop the interface, change this resource, and start
the interface once again.

The option MQNAME(MQAA) specifies the name of the queue manager with which CICS will establish a
connection, maximum of 4 characters. The queue manager must be on the same LPAR where CICS is running.

The option INITQNAME(TCICSTA3.INITQ) specifies the name of the initiation queue the CICS trigger monitor
will use. This queue must be defined in the queue manager and specified in the INITQ option for application
queues. CICS will automatically start the CKTI transaction, passing it this name to use in its processing.

Unlike the CICS DB2 Interface, there is no option to limit the number of “Open TCBS” the CICS MQ Interface
will use. We know that it will may approach the value you specify in MAXOPENTCBS. The limiting factor is
the number of currently in use TCBs by the CICS DB2 interface.

34

MQ Resource Definitions
Define Initiation Queue for CICS Trigger Monitor:
DEFINE QLOCAL({ 'TCICSA3.INITQ') REPLACE +
DESCR('TCICSA3 CKTI initiation queue') +

SHARE DEFSOPT(SHARED) +

MAXMSGL(4000) +
TRIGTYPE (NONE)

QLocal definition for initiation queue used by the CICS trigger monitor

2 Themis

Here we see the Qlocal definition for the “initiation queue” in support of MQ triggering in a CICS region. At
minimum there must one of these for each CICS region you define the MQCONN resource. However, it is
possible to have more than one CKTI (the trigger monitor) task running within the same region. This means
you may need additional initiation queues to support them.

We have added the SHARE and DEFSOPT(SHARED) options to ensure that multiple concurrent CKTI task could
access the same initiation queue if necessary.

The MAXDEPTH and MAXMSGL options have been set to more than is necessary for an initiation queue.
Since the trigger monitor is processing trigger messages as fast as they arrive, the depth should never
approach anywhere near the 1000 message limit. The trigger message is currently less than 1000 bytes, so
4000 byte size limit is 4 times what is necessary.

You should always specify MSGDLVSQ (message delivery sequence) as FIFO (first in first out). This takes
functions like priority message processing out of the way and helps ensure that the trigger monitor can
process the trigger messages as soon as they arrive.

35

MQ Resource Definitions
Define Initiation Queue for CICS Trigger Monitor:

LETE QLOCAL('THMZ00.TRANSACT') PURGE
DEFINE QLOCAL({ 'THMZO0O.TRANSACT') REPLACE +
DESCR('Test queue for requests') +
MAXDEPTH(100) +
SHARE DEFSOPT(SHARED) +
TRIGGER TRIGTYPE(FIRST) +
PROCESS ("' THMZ 00 .EXECCICS') INITQ('TCICSA3.INITQ')

DELETE QLOCAL('THMZ00.RESULTS')

DEFINE QLOCAL{ '"THMZ0O.RESULTS')} R
DESCR('Test queue for replies'

MAXDEPTH(100) +

SHARE DEFSOPT(SHARED)

DELETE PROCESS('THMZO00.EXECCICS')

DEFINE PROCESS('THMZ00.EXECCICS') REPLACE +
DESCR('PROCESS TO TRIGGER TRANSACTION QTO00') +
APPLTYPE(CICS) APPLICID(QTO00)

The QL ocal definitions utilized by the application program

The PROCESS definition for the triggered transaction which executes in the background.

2 Themis

This slide contains the queue an process definitions we used in support of our little inventory application.
The THMZ00.TRANSACT queue is the one where the “Request message” was put with the input from the
initial screen to pass to the QT0O0 update transaction. This why you see the “trigger” attributes populated
plus the PROCESS and INITQ options.

The THMZ00.RESULTS queue is the one which the initiating transaction, RT0O, will issue the MQGET with wait
against, plus the queue where the “Reply message” will be put by the QT00 transaction.

The THMZ00.EXECCICS is the process definition which represents the QT00 transaction to be triggered.

36

INTERFACE

2 Themis

37

MQ Interface Information in an SVC Dump

CICS DAMP: SYSTEM=TCICSAZ CODE=MTOO0L D=4,/0001 22 _07:50:50 03/19/18

se=pi]: CICSMO - SUMMARY

==pi): GLOBAL STATE SUMMARY

Comnection status: Comnected

In standby mode: L

Mgname: MOAA

qmgr: MQAA

webSphere M) releace: 0800

Initiation Queue: TCICSA3. INITG
API Crossing exit active: No

Date/Time connection completed: 15/03/18 13:25:13
DATEITINE AIEctrnactIon ComTennds

Date/tize disconnection completad:

==pi(): TRIGGER MONITOR TRANSACTIONS SUMMARY

Tran Task Tcaiddr Tieaddr Lotaddr Thrdaddr Uowid Teb
id rum in Mg
CKTI ODOS1 267TA2800 28422220 284222A0 284222F8 D4OCOOESCED4SC3 No

=M ALL TRANSACTIONS SUMMARY

Tran Task Toaaddr TieAddr Lotaddr Thrdaddr uowid Teb

id rum in g

CKTI 00051 26TAZ800 28422220 28422240 284222F8 DAOCOOESCEMDASCI No

The key portion is the “TRANSACTION SUMMARY”

2 Themis -

This slide contains the “CICS MQ Interface Summary” from an SVC dump. The upper portion simply contains
information about the MQ connection. This includes the name of the queue manager name involved and its
version. Another key piece of information is the name of the specified initiation queue. You can also see the
current status of the connection.

The “TRANSACTION SUMMARY” show all of the tasks in the CICS region which have or are currently accessing
MQ resources. Much of the information is of minimal interest, such as TcaAddr, TieAddr, and Uowid. The
LotAddr is the control blocks used for the task during execution. The Tcb in MQ indicates if the task currently
has a MQ request outstanding.

We have ignored the “TRIGGER MONITOR TRANSACTION SUMMARY” since the CKTI transactions will also
show the same information in the “All TRANSACTION SUMMARY”.

38

DFHAGINT

Definetime 2018/03/07 11:52:2%
Changetime 2018/03,/07 11:52:25
Installtime 2018/03/07 11:52:25

MQ Interface Information in an SVC Dump

27752000 CICS MQINI BLOCK

Definesource MOAA
changeusrid CICSUSER
Installusrid CICSUSER

Changeagent DYNAMIC
Installagent DYNAMIC

Changeagre] 0700

O1AD Z9FE4T 48 00000000
The 2 control blocks used for the life of the CICS MQ interface

No longer documented, IBM droppedthe Supplementary Data Areas manual

0000 OOADGEC4 CECBD4DE CIDSCIM0 40404040 C4C6CHED4 DACIDSCI EICICICI EXCIF34B *..>DFHQINI DFHMQINITCICSAS. *

0020 CO5C¢E3 40404040 ~INITQ -

0040 40404040 40404040 00D00S1C OOO000D00 D4OCOOES CELBFACO 00000000 00000000 * sesssasaMeWesafiannanan®

0060 D4DACIC1 40404040 DIFELTAL O4F3FCO0 D3IFELTAL O4F3FCO0 C3CICIE2 E4EXCSDI “MQAA L..o.3..Le.. . 3. CICSUSER ™ 27752060
0080 OO0SFOFT FOFODIFE 17A104F3 FCOOC3CY C3E2E4E2 CSD9000S 00000000 00000000 *..0700L....3..CICSUSER.....co0ss - 27752080

Task rnumber of trigger momitor: 00051

Date/time trigger monitor started: 18/03/18 13:25:16

Date/time trigger monitor stopped: 1B8/03/18 13:25:16

LOA.MOM 28438210 CICS MG LIFE OF ADAPTER BLOCK
0000 C3010020 C30306C1 01000000 SO0330EE 00000000 00010001 00010000 27752450 28438210
DFHMQLOC 27752A50 CICSMQ LIFE OF CONNECTION BLOCK

0000 C30201A8 C3DIDEC3 02000000 00000000 OO0LSLEOS D4DSCICL E3C3ICACI EZCLFI40 2T TS ZAS0
0020 O DO000000 27752470
0040 00000000 00000000 00000000 28438210 D4DACIC1 00000000 00000000 00000000 * 27752490
0060 00000001 00000000 28422240 SST9SFCS ASFELB30 O0000LF4 FOFTFOFO 00000001 * 27752480
0080 00000002 .. 2775 24D0
00AD 00000000 .. 2775 24F0
00Co 00000001 00000002 *.. 27752810
ODED 00000001 00000000 284222F8 284222F8 277528C8 . 27752830
0100 OOSFCLO00) 00000000 00000000 00000000 = 27752850
GLZ0 GOHIG000 DOD003E0 27TEBTO
0140 ASFATIDE DISOIFED DADBLICL 404040 4 4040404
0160 & + 4 404 B 404 C1010030 C1C203D2 *
0180 29FC3000 SBTIFCE ASFTC968 OOBAT218 O0OD0LF4 *

2775 Z8F0

£ Themis

The first data area is the DFHMQINI or MQ initialization control block.

+0 Half-word length of the data area
+2 14 byte identifier of the data area
+18 Name of the initiation queue

+48 Task number of the CKAM monitor task
+60 Name of the MQCONN resource definition

The second data area is the “LIFE OF ADAPTER” data area. There is not much information of use to use in the

data area.

The third data area is the “LIFE OF CONNECTION”.

+14 Sub-system name of the queue manager
+18 CICS Applid
+50 Sub-system of the connected QM

Most of the rest of the data is the statistics which are written to SMF.

39

0000
0020
0040
0060
0080
004D
0oco
00ED
0100
0120
0140
0160

MQ Interface Information in an SVC Dump

DFHMQLOT 28422240 CICS,MQ LIFE OF TASK BLOCK

O1706EC4 CELBD4DE DIDEEZS0 40404040
CID2EXCY 000005 IC CICICIEZ E4E2CSDY
27888194 2B4222F8 267A2800 D40CODES

00000000 00000000 00000000 28438230
29182030 29182030 000019C0 00400000

"L ODFHOLWT ...

*CKTI....CICSUSER

CEMD45C3 00000003 DOBOGECS CECEDWME ~*..

EXBC440 40404040 00148000

28422240

28422240 B0033108 0000000 0DODO00D
00000000 00000000 09000003 29183316
000007F1 00000000 DO01E1E0S 00010000
00000000 00000000 C 3080020 C3D407C1
000001F4 00000000 E3C3COC3 E2CIF34E
$0404040 40404040 40404040 4040404

00000000 00000000 28422328 00000000 *

CEDIC240 00050001 29182DAD 00010000
00000000 00000000 00000000 00000000
00000000 00000000 SETISFCE DOD000ZS
CODSCOES DE404040 20405040 20404040
40404040 40404040 E3CBD4EY FOFO4BE3S

DICIDSEZ C1C3E340 4040404

$040404 40404040 40403040

40404040 40404040 29132088 00000000

Thread information:

STATUS = Gemwait
FRERC1 = DOOO

FRERC2 = DOODDOTFL
FREFBACK = 00000000

INTY
APPLO

= TCICSAZ, INITQ
= THMZO00. TRANSACT

The control block used while the task is executing

No longer documented, IBM droppedthe Supplementary Data Areas manual

......... ol 28422240

cofe oot 2B4222C0
. 28422260
....... 28422300
28422320
28422340
28422360

R .. 28422380

" 28422300
THMZO0.T* 2842230
- 28422360
- 28422400

2 Themis .

Here we find the Life Of Task (LOT) control block. The data area is used while the task is execution to
manage the application making requests to the queue manager. The data area is no longer documented.
However, the last Supplemental Data Areas manual was for CICS TS V4.1 and the control block seems to have
not changed with subsequent releases.

The LOT basic format is as follows:

+0
+2
+20
+24
+28
+48
+108
+138

Half-word length of data area

14 character eye-catcher

CICS transaction ID

CICS task number

User ID

TCA address

Name of the initiation queue if the LOT represents a CKTI transaction
Name of the queue accessed by last MQ call if LOT is for a user transaction

40

2 Themis

41

CKQC Screen for MQ Interface

Connection CKTI Task

CKQCMO CICS Adapter Control -- Initial panel

select menu bar item using Tab key. Then press Enter.

Fl=Help F3=Exit

Initial screen for CKQC transaction

£ Themis .

This is the initial screen for the CKQC transaction. The three items at the top of the screen; Connection, CKTI
and Task; are drop down menus with more selection choices.

42

CKQC Screen for MQ Interface

Connection CKTI Task

e e e e e o s e e e e
| select an action. |apter Control -- Initial panel
| |

| 4 1. start... |sing Tab key. Then press Enter.
| 2. Stop... |

| 3. Modify... I

| 4. Display |

| |

e e ————————.

| Fl=Help Fl2=Cancel |

B ettt 2

DFEMO0424 T TCICSAZ Invalid key entered

Fl=Help F3=Exit

Drop down menu for “Connection” option

2 Themis .

This drop down is shown by putting the cursor on the “Connection topic” and hitting the enter key. You will
notice the four choices, and we have entered a “4” to go to the “Display” function.

CKQC Screen for MQ Interface

CKOCM2 Display Connection panel
Read connection information. Then press F12 to cancel.
CICS Applid = TCICSA3 Comnection Status = Connected aQMgr name= MOAA
Mgname = MQAA Tracing = 0n API Exit = off
Initiation Queue Name = TCICSA3.INITQ
————————————————————————————————— STATISTICS =-=========cescccccecccc e e —————
Number of in-flight tasks = 1 Total API calls = 4393
Number of running CKTI = 1
APIs and flows analysis syncpoint Recovery
Run OK 4381 MQINQ 355 Tasks 316 Indoubt 0
Futile 0 MQSET 44 Backout 0 unresol 0
MOOPEN 48 ~======- Flows ====== Commit 201 Commit 0
MQCLOSE 471 calls 4393 S-Phase 201 Backout 0
MOGET 1214 syncComp 4393 2-Phase G
GETWAIT 306 SuspReqd 0
MQPUT 1022 Msg wait 12
MQPUTL 673 switched 4358
Fl=Help Fl2=Cancel Enter=Refresh

Display screen from “Option 4" on Connection drop down

£ Themis ..

This slide shows the output of the Display function. It is set of general information about the CICS MQ
interface. On the top portion we see the CICS region name, connection status, queue manager name,
MQCONN resource name, and the name of the initiation queue.

In the center portion we see the current number of tasks in-flight, total MQ calls issued, and the current
number of running CKTI transactions.

The lower portion contains a break down of the MQ calls issued to this point in time. The MQOPEN,
MQCLOSE, MQGET, GETWAIT, MQPUT, MQPUT1, MQING, and MQSET and simply the number of each call
executed. The GETWAIT is the number of MQGET calls issued with the MQGMO-WAIT option.

The Run OK value represent the number of calls which have completed successfully. The value in Futile
represents the number of MQ calls issued while the connection was not active.

Under the “Syncpoint” category, Tasks is the total number of tasks using MQ to this point in time. The
Backout and Commit are counts for the tasks which have been rolled back and committed.

Under the “Recovery” category, Indoubt is the number of UOWSs which were indoubt at MQ interface start
up. The UnResol is the number which were not resolved. The Commit is the number resolved by a Commit
and Backout is the number resolved by Backout (rollback).

Under the “Flows” category, Calls is the number of flows to the queue manager on the connection, and

SyncComp is the number which have completed synchronously. The values SuspReqd and Msg wait indicate

the number flows which had to wait for completion of the MQ call. The value of Switched represents the
number of calls where a TCB switch occurred.

44

CKQC Screen for MQ Interface

Connection CKTI Task

e e e e e e ———— e, e - - ———————————
| select an action. |apter Control -- Initial panel

| |

| 31. start... |sing Tab key. Then press Enter.

| 2. Stop... |

| 3. Modify... | bmmmmmmmmmmmmmmmm e +
| 4. Display | Modification Options

| |

B + Select modify option. Then

| Fl=Help Fl2=Cancel |

1. Reset statistics
2. Enable API Exit
3. Disable API Exit

|
|
|
press Enter. |
i
|
|
|

Fl=Help F3=Exit

Drop down from Connection and then “Option 3" pop-up selection

2 Themis .

From the Connection drop down menu, we now choose option 3 to Modify the connection. Here you see the
pop-up menu with the modify options. We have a limited set of choices on what to modify. We can simply
reset the statistic discussed earlier, and either enable or disable the API crossing exit.

CKQC Screen for MQ Interface

Connection CKTI Task

e e e e e e ———— e, e - - ———————————
| select an action. |apter Control -- Initial panel

| |

| 2 1. start... |sing Tab key. Then press Enter.

| 2. Stop... |

| 3. Modify... [+

| 4. Display | | Stop Connection

| (.

4o——mmm——mmme—e———o——¢ | Select stop type.

| 1. Quiesce
| 2. Force

|

|

|

| Fl=Help Fl2=Cancel | | Then press Enter. |
+ i

|

I

I

Fl=Help F3=Exit

Drop down from Connection and then “Option 2" pop-up selection

2 Themis |

We then choose option 2 on the Connection drop down menu, Stop the MQ connection. Here you see the
pop-up for the Stop function. We either choose to “Quiesce” or “Force” stop the connection. Quiesce will
allow all currently active tasks to complete and disallow any new MQ tasks from starting. Force will cause the
abnormal termination of any current tasks and disallow any new MQ tasks from starting.

46

CKQC Screen for MQ Interface

| 2. Initiation Queue Name (IQ) . . .
| TCICSA3.INITQ

Connection CKTI Task

e e e e e o s e e e e

| select an action. |apter Control -- Initial panel

| |

| 1 1. start... |sing Tab key. Then press Enter.

| 2. Stop... |

| 3. Modify... I e T +

| 4. Display (. start a Connection |

| I |

B 4+ | Type parameters. Then press Enter. |

| Fl=Help Fl2=Cancel | | |

4-====--------------—% | 1. Queue manager name (SN) . . MOAA i
.
I
I

Fl=Help F3=Exit

Drop down from Connection and then “Option 1” pop-up selection

2 Themis .

Finally we choose option 1 from the Connection drop down menu, Start the connection. Here you see the
pop-up menu for the Start function. We are required to enter two values, 1 is the name of the queue
manager to connect with, and 2 is the name of the initiation queue the CKTI transaction is to use. The queue
manager name may be different than the one specified by the MQCONN resource definition.

47

CKQC Screen for MQ Interface

Connection CKTI Task
__________________ e e e
CcKacMO CIC | select an action. |itial panel
| |
select menu bar it | 3 1. Start... |press Enter.
| 2. Stop...
| 3. Display |
|

A X
| Fl=Help Fl2=Cancel |

Fl=Help F3=Exit

Drop down from CKTI option

2 Themis .

On this slide we have placed the cursor on the CKTIl option on the top menu line and hit enter. You are
presented with the CKTI drop down menu. You will notice the three possible choices. We have picked option
3 to display the current CKTI information.

CKQC Screen for MQ Interface

CKOCM4 Display CKTI panel

Read CKTI status information. Then press F12 to cancel.

CKTI 1lto 1of 1

Task Num Task Status Thread Status Num of APIs Last API

0000051 Normal Msg wait 9 MQGET
Initiation Queue Name: TCICSA3.INITQ

DFHMQD461 I TCICSA3 Top of display.
Fl=Help F7=Backward F8=Forward F1l2=Cancel Enter=Refresh

Display screen from “Option 3" on CKTI drop down

2 Themis |

Here is the Display screen for the current CKTI transaction(s). We see only one CKTI running in the CICS
region at the moment. However, we can start up more CKTI transactions as required. There is not much
information on this screen. Simply the CICS task number, status, number of API calls issued, and the name of
the initiation queue.

CKQC Screen for MQ Interface

Connection CKTI Task
__________________ e e e
CKQCMO CIC | select an action. |itial panel
| |
Select menu bar it | 2 1. Start... |press Enter.
| 2. Stop...
| 3. Display |
| |
i R +
| F1 | Stop Task Initiator

| Type Inmitiation Queue Name. Then press Enter.

Initiation Queue Name (IQ) .

| Fl=Help Fl2=Cancel |

Fl=Help F3=Exit

Drop down from CKTI and then “Option 2" pop-up selection

2 Themis

Now we choose option 2 from the CKTI drop down menu, Stop the CKTI task. Here you see the pop-up menu
where you specify the name of the initiation queue for the CKTI task you want to stop. The assumption is
that every CKTI task will be using a different initiation queue.

CKQC Screen for MQ Interface

Connection CKTI Task
__________________ e e e
CKQCMO CIC | select an action. |itial panel
| |
select menu bar it | 1 1. Start... |press Enter.
| 2. Stop...
| 3. Display |
| |
e +
| F1 | START TASK INITIATOR

| Type Inmitiation Queue Name. Then press Enter.

|
|
i
| |
| Initiation Queue Name (IQ) |
|
|

| Fl=Help Fl2=Cancel |

DFEMO0424 T TCICSAZ Invalid key entered

Fl=Help F3=Exit

Drop down from CKTI and then “Option 1” pop-up selection

2 Themis

Finally we chose option 1 on the CKTI drop down menu, Start a CKTI transaction. Here you see the pop-up
menu for the Start function. You need only specify the name of the initiation queue that the CKTI transaction
will use. You can start more than one CKTI transaction by simply specifying the same or a different initiation
queue.

CKQC Screen for MQ Interface

CKOCM3 Display Task panel
Read task status information. Then press F12 to cancel.

Tasks 1 to 1of 1

Tran User Task Task Thread Total Res API Last Thread
1d 1d Num Status Status APIs sec Exit MQ call 1D
CKTI CICSUSER 00051 Normal Msg Wait 9 No No MOGET 284222A0

Fl=Help F7=Backward F8=Forward F1l2=Cancel Enter=Refresh

Display screen from the “Task” option on the CKQC main screen

2 Themis

This screen is obtained by putting the cursor on the Task topic at the top of the initial screen and hitting
enter. This display shows a list of all of the current tasks which has performed MQ calls. You will see any of
your tasks, plus the CKTI tasks currently running in the CICS region. On this display you find the basic
information about the task, plus its current status. The Res Sec column indicates if “resource security” is
active for the transaction. The API Exit column indicates it the API crossing exit is in effect for the transaction.
You will also see the “Last MQ call” issued and the internal Thread ID for the task.

